Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Penn Researchers Take a Big Step Forward in Making Smaller Circuits

Abstract:
Nanotubes used to create a functional electronic circuit

Penn Researchers Take a Big Step Forward in Making Smaller Circuits

Philadelphia, PA | July 29, 2005

Physicists at the University of Pennsylvania have overcome a major hurdle in the race to create nanotube-based electronics. In an article in the August issue of the journal Nature Materials, available online now, the researchers describe their method of using nanotubes - tiny tubes entirely composed of carbon atoms - to create a functional electronic circuit. Their method creates circuits by dipping semiconductor chips into liquid suspensions of carbon nanotubes, rather than growing the nanotubes directly on the circuit.

"Given their amazing electric properties, nanotubes have been a subject of keen interest for creating such things as chemical sensors, flexible electronics and high-speed, high-device-density microprocessors for computing," said Alan T. Johnson, associate professor in Penn's Department of Physics and Astronomy. "The problem is that the properties we like best about nanotubes their size and physical properties also make them very difficult to manipulate."

Instead of growing nanotubes in a pattern on a silicon chip, as is conventionally done, the Penn researchers devised a means of "sprinkling" nanotubes onto chips.

University of Pennsylvania - An image showing a circuit made of nanotubes
An image showing a circuit made of nanotubes. Copyright © University of Pennsylvania
Click on image for larger version.

"We dip the chips into nanotubes much like dipping an ice cream cone into candy," said Danvers Johnston, a graduate student in Johnson's laboratory and lead author of the study. "Ultimately we can make it so that the nanotubes only stick where want them to in order to form a circuit."

Single-walled nanotubes are formed by turning a single sheet of carbon atoms into a seamless cylinder approximately one nanometer a billionth of a meter in diameter.

Nanotubes can be either semiconducting or "metallic" the latter is highly conductive to electricity depending on the exact geometry of the carbon atoms. Semiconducting nanotubes make for exceptional transistors, which is why so much attention has been devoted to finding a way to use them in electronics.

Previously, most nanotube circuits have been made by growing each nanotube on the surface of a chip, using a process known as chemical vapor deposition. Unfortunately, this method often results in a circuit comprised of both types of nanotubes, metallic and semiconducting. Furthermore, the growth direction of the nanotube is arbitrary, and their diameters are large. Small diameter carbon nanotubes are more useful for switches.

"Fortunately, other researchers have made it possible to grow small diameter nanotubes and to separate metallic from semiconducting nanotubes in solution," said Arjun Yodh, a professor in Penn's Department of Physics and Astronomy. "Ultimately our process can create a large batch of small diameter nanotubes in solution, can separate out the semiconducting nanotubes and then can place them in proper position on a patterned silicon chip."

The researchers, along with post-doctoral associate Mohammed F. Islam, found their biggest challenge in purifying the mass-produced nanotubes. The process they used to create nanotubes in bulk frequently adds impurities usually stray bits of carbon and leftover catalysts that ultimately detract from the quality of the nanotubes.

The Penn researchers found a purification scheme for the nanotubes by heating them in moist air with a gentle acid treatment and then using magnetic fields to separate the nanotubes from the impurities. They deposit the nanotubes by dipping a chip covered with a glue-like substance into the nanotube solution, and then they wash off the excess glue and whatever solvents that remain.

The resulting circuits take advantage of unique electrical properties of nanotubes and can be produced in bulk. Since the researchers can create nanotubes via processes separate from the chips, this process allows for a better control of the quality and diameter. The Penn researchers believe there is a definite role for nanotechnology in the future of electronics.

"The only way to make faster processors is to cram more transistors together," Johnson said. "Nanotubes are just about the smallest transistors that exist right now. So the more densely they can be packed on a chip, the faster the chips can become."

Funding for this research was provided by grants from the National Science Foundation and NASA.

####

Contact:
Greg Lester
215-898-8721
glester@pobox.upenn.edu

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project