Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New Magnetic Herding Technique

Abstract:
Method avoids shortcomings of using other means to move tiny "colloidal" objects, such as cells and large molecules

New Magnetic Herding Technique Proposed to Manipulate the Very Small

Duke University

Durham, N.C. | June 20, 2005

Engineers have introduced a new magnetic shepherding approach for deftly moving or positioning the kinds of tiny floating objects found within organisms, in order to advance potential applications in fields ranging from medicine to nanotechnology.

The authors of a new research article said their method avoids pitfalls of using tiny light beams, electric currents or even a competing magnetic approach to micromanipulate so-called "colloidal" objects.

"Biology is composed primarily of colloidal materials, things larger than a few billionths of a meter that are suspended in solution and don't settle rapidly," said Benjamin Yellen, who developed this "magnetic nanoparticle assembler" technique while obtaining his doctorate at Drexel University.

"They could be cells or large molecules; they are also being investigated for a variety of new devices, such as miniature lasers or semiconducting components," added Yellen, who in September will become an assistant professor of mechanical engineering and materials science at Duke University's Pratt School of Engineering.

Yellen is first author of a research paper on the method, already available on-line and to be published in print in the Tuesday, June 21, 2005, issue of Proceedings of the National Academy of Sciences (PNAS). His coauthors are Gary Friedman, the Drexel professor of electrical and computer engineering who supervised his Ph.D. work, and Drexel graduate student Ondrej Hovorka.

The research was supported by the National Science Foundation and Department of Defense.

According to the paper, other investigators are currently focusing either on using laser light beams or electric fields to "transport, sort or assemble microscopic objects." But Yellen's research group contends that "neither technique has demonstrated sufficient flexibility required for widespread adoption."

Yellen, who is a postdoctoral researcher at Children's Hospital of Philadelphia, said in an interview that while high-intensity lasers -- like fictional Star Trek tractor beams -- can move around tiny objects, they can also destructively overheat biological materials. In addition, micromanipulating large numbers of particles can require confining unmanageable numbers of individual light beams in small spaces.

Meanwhile, using electricity as a micromanipulator requires space-consuming grids of electrical circuitry, he added. And electrical fields can also trigger disruptive chemical reactions.

"The big advantage to using magnetism is that very few things in nature are magnetically susceptible," he said.

The PNAS authors' paper described how they demonstrated their technique by first patterning permanent rectangular and circular "magnetic traps," each with millionths of a meter dimensions, on silicon or glass wafers. Each trap was made of cobalt, an element that, like iron, is magnetic.

Over those trap-patterned wafers the authors then added a fluid containing swarms of suspended magnetic iron oxide nanoparticles, with each particle measuring only about 10 billionths of a meter ("nano" means "billionths").

Into this "ferrofluid" (the prefix "ferro" refers to "iron") they then floated non-magnetic microscopic beads of the colloid latex, each bead measuring between 90 and 5,000 nanometers.

Finally, the researchers set up an additional switchable external magnetic field that, when switched on, could alter the magnetic field surrounding the permanent magnetic traps.

This arrangement allowed the non-magnetic latex beads to be herded around, even arranged into a variety of complex patterns, by varying how the dueling magnetic fields influenced the shepherding swarms of magnetic iron oxide nanoparticles.

Under the direction of changeable magnetic fields, the particle swarms acted collectively like nano-scale tugboats to push and pull the comparatively large beads of colloids. The beads themselves were color-labeled so their movements could be traced under microscopic observation.

"In a way, bead movement is analogous to the movement of a train along a railroad track," wrote the authors in their PNAS paper.

While "trap magnetization establishes the track," fields from the switchable external magnet "provide locomotion," they explained. Moreover, the track could be switched to new orientations by adjusting the interplay of fields between the permanent traps and the switchable magnetic source.

The authors suggested that the micromotions of this magnetic nanoparticle assembler might be made programmable by modifications of today's magnetic recording technology.

They listed a number of potential applications, ranging from the speedier assembly of molecules for biosensors or hybridization experiments, to precision arrangements of cells, bacteria and viruses in futuristic medical diagnostic devices, to the assembly of advanced microelectronic components, such as nanowire transistors.

Their paper also noted that a competing magnetic micromanipulation technique already exists that requires pre-bonding to "magnetic particle carriers."

"You have to do a lot of chemical steps along the way, so it's not so convenient," Yellen said of that competing approach. "It would be much more convenient to just simply mix the nonmagnetic materials with a ferrofluid and have them moved around without having to attach them to a magnetic carrier."

Once he arrives at Duke, Yellen said he plans to apply his magnetic nanoparticle assembler approach to designing advanced biosensors and cell membrane probes.

####

Contact:
Monte Basgall
(919) 681-8057
monte.basgall@duke.edu

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Nanomedicine

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Announcements

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Tools

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE