Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Oil Worth Its Weight in Gold in Directed Nanomachining

Abstract:
Researchers sculpt material at the nanoscale

Oil Worth Its Weight in Gold in Directed Nanomachining

Fayetteville, AR | May 25, 2005

The world of nano-machines has moved a step closer to reality, thanks to researchers who have found a way to sculpt material at the nanoscale in a predictable, controllable and inexpensive manner by using a conducting liquid medium.

This technique has potential applications in single DNA detection devices such as nanopores, nanoscale interconnects in biological and semiconducting devices, molecular sieves for protein sorting and nanojets for fuel or drug delivery.

Ajay Malshe, associate professor in mechanical engineering at the University of Arkansas; K. Virwani and Devesh Deshpaned, student researchers; and K.P. Rajurkar of the University of Nebraska, Lincoln, are presenting their results at the meeting of the International Institution for Production Engineering Research. They also will publish their manuscript in the institution's journal.

"With this technique, you can remove on demand precisely what you want to, where you want to remove it," Malshe said. "It's very simple but very powerful."

The researchers use a technique called nanoscale electro-machining (nano-EM) to etch nanopores as small as 8-10 nanometers in diameter on an atomically flat gold surface.

They used a scanning tunneling microscope with a platinum-iridium atomically sharp electrode tool dipped in a dielectric oil medium to apply an electric field to the system. The tool and the surface remain about two nanometers apart. As a voltage passes through the system, the tunneling electrons move between the tool and the surface through the oil's molecules and cause precise ejection of gold atoms, which creates the tiny pores.

Currently, creating a nanopore by the standard scanning tunneling microscopy techniques requires vacuum chambers and expensive equipment. And frequently the samples must be transferred from the machine that created them to a different instrument that can examine them, which takes time and money. Both of these issues pose a problem for manufacturers who might be interested in developing nanoscale electronic, biomedical and other related products.

With nano-EM, the liquid medium allows researchers to work outside of the expensive vacuum environment, and it is responsible for the precision because of the long chain molecules found in the oil. The current process becomes unpredictable when performed in ambient air, but introduction of oil as a medium made a dramatic difference in both precision and reproducibility.

"Researchers believe that long chain oil molecules are acting as 'nano-wires' to connect the nano-EM tool tip and the substrate for precise application of the intense field," Malshe said. "Every molecule between the tiny gap of two to three nanometers is acting as a conductive wire."

The researchers designed the system so that the scanning tunneling microscope alternates between acting as the machining system and the probe. This technique has enabled the researchers to create nanopores on the surface and see the images at the same time - an important advantage in nano-manufacturing, because it means scientists can create a nano-well and immediately determine whether or not it has the correct atomic scale dimensions. This eliminates the problem of having to transport a sample to another detection device to ensure its quality.

"This is one of the few techniques that allows you to 'write' and 'read' at the same time," Malshe said.

This also is one of the few techniques that allows researchers to manipulate various materials -- from silicon to silicon nitride to gold -- by the selection of appropriate liquid and process conditions. The process can be used with computer-aided designing (CAD) systems for automation and can be scaled up for mass production.

Eventually, the researchers hope this technique will allow scientists to work at the nanoscale with all kinds of conducting and semi-conducting materials in a non-vacuum, cost-saving environment.

The researchers have patents pending in this area. To bring the benefits of the technology to the user community, the university is licensing the patent rights to NanoMech LLC, based in the Innovation Center at the University of Arkansas Research & Technology Park. Malshe is the company's co-founder and chief technology officer.

"Our long-term goal is to create a complete nanofabrication laboratory on a microchip - machining, deposition, metrology and assembly events at nanoscale, at a given time, at a given place and according to engineering specifications," Malshe said.

####

Contact:
Ajay Malshe
Professor, Mechanical Engineering
College of Engineering
(479) 575-6561
apm2@engr.uark.edu

Melissa Lutz Blouin
Science and Research Communications Manager
(479) 575-5555
blouin@uark.edu

Copyright © University of Arkansas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Nanomedicine

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project