Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NASA Awards $11M ‘Quantum Wire’ Contract to Rice

Abstract:
Smalley Lab to Produce Prototype Power Cable For Next-Gen Spacecraft

NASA Awards $11M ‘Quantum Wire’ Contract to Rice

Houston, TX | April 22, 2005

NASA has awarded Rice University’s Carbon Nanotechnology Laboratory a four-year, $11 million contract to produce a prototype power cable made entirely of carbon nanotubes.

The new project will be discussed with media in a briefing at the Johnson Space Center at 2 p.m. CDT April 26. Available to media in that session will be:

  -- Jefferson D. Howell, Jr., Director, NASA Johnson Space Center
  -- Richard Smalley, Director, Carbon Nanotechnology Laboratory (CNL)

The project aims to pioneer methods of producing pure nanotube power cables, known as quantum wires, which may conduct electricity up to 10 times better than copper and weigh about one-sixth as much. Such technologies may advance NASA's plans to return humans to the moon and eventually travel to Mars and beyond.

“Technology advances like these are exactly what will be needed to realize the future of space exploration,” Howell said. “We are extremely fortunate to be able to pool the unique expertise available at JSC, Rice and the other collaborators in this effort.”

The contract was awarded by NASA's Exploration Systems Mission Directorate. It calls for an additional $4 million in related research at JSC, where researchers will conduct crucial work in the area of nanotube growth, and at NASA’s Glenn Research Center, where nanotube composites will be developed for fuel cell components.

Rice’s portion of the funding includes support for collaborative projects at Houston-based Carbon Nanotechnologies Inc., which specializes in large-scale nanotube production; GHG Corp.; Duke University and the University of Pennsylvania.

“In the Space Shuttle, the primary power distribution system accounts for almost 7 percent of the craft’s weight,” said Smalley, University Professor, the Gene and Norman Hackerman Professor of Chemistry, professor of physics and the lead researcher on the project.. “To support additional instrumentation and broadband communications, NASA’s next generation of human and robotic spacecraft will need far more power. For ships assembled in orbit, a copper power distribution system could wind up accounting for one-quarter the weight of the vessel.”

The contract calls for CNL to provide NASA a one-meter prototype of a quantum wire by 2009. This will require major breakthroughs in the production and processing of nanotubes. Notably, a way has yet to be found to produce a specific type of nanotube. Of the hundreds of types available, only about 2 percent, known as “armchair” nanotubes, are types that conduct electricity well enough for quantum wires.

“We need to find a way to make just the nanotubes we want, and we need them in large quantities,” said CNL Executive Director Howard Schmidt. “Another major focus of the research will be finding new ways to combine armchair nanotubes, which are single molecules just a billionth of a meter wide, into large-scale fibers and wires.”

The April 26 briefing will be available to media in attendance only and will not be broadcast on NASA Television.

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.


Media Contacts:
John Ira Petty
Johnson Space Center
Houston
281-483-5111

Jade Boyd
Rice University
o 713-348-6778
c 713-302-2447
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Investments/IPO's/Splits

Nanometrics Announces Upcoming Investor Events May 10th, 2016

ORIG3N Added to Companies Presenting at Harris & Harris Group's Annual Meeting, Tuesday June 7, 2016, the New York Genome Center April 27th, 2016

Aspen Aerogels to Present at the 28th Annual ROTH Conference March 14th, 2016

Harris & Harris Group Announces Formation of Co-Investment Fund for Accredited Investors March 9th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Announcements

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic