Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > INBRAIN Neuroelectronics raises over €14M to develop smart graphene-based neural implants for personalised therapies in brain disorders

Abstract:
INBRAIN Neuroelectronics, a spin-off company of the Catalan Institute of Nanoscience and Nanotechnology (ICN2) and ICREA, announces a €14.35M Series A investment, co-led by Asabys Partners and Alta Life Sciences, and joined by Vsquared Ventures (Germany), TruVenturo (Germany) and CDTI (Spanish Ministry of Science and Innovation). INBRAIN has the mission to develop intelligent neuroelectronic therapies based on graphene technology for application in patients with epilepsy, Parkinson’s and other brain related disorders.

INBRAIN Neuroelectronics raises over €14M to develop smart graphene-based neural implants for personalised therapies in brain disorders

Barcelona, Spain | Posted on March 26th, 2021

In June 2020, INBRAIN received a first seed investment from a syndicate of investors led by Asabys Partners (through Sabadell-Asabys Health Innovation Investment) and Alta Life Sciences, including the Institut Català de Finances (ICF), Finaves (IESE Business School) and BStartUp. Today the company announces a €14.35M Series A investment, one of the biggest rounds in the Spanish medtech industry, co-led by Asabys Partners and Alta Life Sciences, and joined by Vsquared Ventures, a deep tech focused early-stage venture capitalist based in Munich (Germany), TruVenturo GmbH, Germany’s most successful tech and life science company builders, and CDTI (Spanish Ministry of Science and Innovation). The financing round also counts with the follow-on investment from ICF Venture Tech II, investment fund from the ICF.

This investment will allow INBRAIN to bring for the first time this technology, built around an innovative nanoscale graphene electrode, to humans and to consolidate the safety of the material as the potential new standard of care in neurotechnologies.

According to a 2010 study commissioned by the European Brain Council, the cost of brain disorders in Europe alone reaches approximately 800 billion euros a year, with more than one-third of the population affected. Between 25% and 35% of patients having a neuronal disease are refractory to pharmacological treatment and are left without an effective therapy. The high incidence of brain-related diseases worldwide and their huge social cost call for greater investments in basic research in this field, with the aim of developing new and more efficient therapeutic and diagnostic tools.

Existing brain interfaces are based on metals (such as platinum and iridium), with significant restrictions on miniaturization and signal resolution, and therefore responsible for considerable side effects. As a consequence, there is a 50% rejection rate in candidate patients. INBRAIN Neuroelectronics’ disruptive technology, based on the novel material graphene, will overcome the current limitations of metal-based neural interfaces.

INBRAIN Neuroelectronics is bringing a complete technological transformation to the treatment of neurological diseases. Its brain implantable intelligent systems are based on graphene electrodes, which allow miniaturization to nanoscale fabrication, with the potential to reach single-neuron resolution. The extraordinary properties of graphene ̶ which is light, biocompatible, flexible and extremely conductive ̶ are harnessed in much smaller devices that are safer to implant and can be programmed, upgraded and recharged wirelessly.

Driven by artificial intelligence, the implant can learn from the brain of the specific patient and trigger adaptive responses to deliver a personalised neurological therapy. In addition, the use of Big Data Management will permit remote monitoring of the device and data processing. The technology has already been validated in in-vitro and in-vivo, biocompatibility and toxicity tests have been successful. Studies on large animals have been completed and the investment will be dedicated to bring the technology to human patients, in collaboration with key neurosurgical and neurological groups in Europe.

"The success in supporting innovation is multiple," comments Dr Pablo Pomposiello, Head of the ICN2 Business and Innovation Unit. "Most importantly, the capital raised will allow testing in humans of the novel graphene-based technology that one day might alleviate the suffering from neurological disease. But also, the investment validates the vision that public and private sectors can collaborate and accelerate innovation. Finally, it shows that relative small centers like ICN2 can achieve world-class results by sustaining internal, long term investment in promising projects.

INBRAIN is directed by Carolina Aguilar (Former Medtronic Deep Brain Stimulation European and Global Commercialization Director) and was founded, among others, by ICREA Prof. Jose A. Garrido, leader of the ICN2 Advanced Electronic Materials and Devices Group, Prof. Kostas Kostarelos, leader of the ICN2 Nanomedicine Group and Professor and Chair of Nanomedicine at the National Graphene Institute and the Faculty of Biology, Medicine and Health of the University of Manchester (UK), and Dr Anton Guimerà, a researcher at the Barcelona Institute of Microelectronics (IMB-CNM-CSIC). The technology development team is formed by neurotechnology experts such as Bert Bakker (CTO) and Michel Decre (Technology Advisor & Board Member) from Philips and other European successful neurotechnology startups.

####

For more information, please click here

Contacts:
Virginia Greco
Phone: 622369267
Fax: 08193

Comments: Edifici ICN2 - Campus UAB
Av. de Serragalliners s/n

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

2 Dimensional Materials

Two-dimensional hybrid metal halide device allows control of terahertz emissions October 1st, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

Graphene/ Graphite

Graphene nanotubes provide a shortcut to add conductivity to powder coatings October 1st, 2021

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Investments/IPO's/Splits

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

180 Degree Capital Corp. Reports +14.2% Growth in Q1 2021, $10.60 Net Asset Value Per Share as of March 31, 2021, and Developments From Q2 2021 May 11th, 2021

180 Degree Capital Corp. Issues Second Open Letter to the Board and Shareholders of Enzo Biochem, Inc. March 26th, 2021

180 Degree Capital Corp. Reports +6.7% Growth in Q4 2020, $9.28 Net Asset Value per Share as of December 31, 2020, and Developments from Q1 2021 Including Expected Investment in a Planned SPAC Sponsor February 22nd, 2021

Nanomedicine

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Directly into the brain: A 3D multifunctional and flexible neural interface: Novel design of brain chip implant allows for measuring neuronal activity while simultaneously delivering drugs to the implant site October 1st, 2021

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

Discoveries

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project