Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Case Researchers “Grow” Carbon Nanotubes, Cheaper, Faster

Abstract:
Development could lead to smaller but more powerful computers and electronic communication devices

Case Researchers “Grow” Carbon Nanotubes, the Basic Building Blocks of Nanotechnology, in Lab Using Faster, Cheaper Means

Case Western Reserve University

Cleveland, OH | April 14, 2005

A Case Western Reserve University engineer has created the "seeds" that can grow into today's and tomorrow's computer and phone chips.

In a development that could lead to smaller but more powerful computers and electronic communication devices, Massood Tabib-Azar, a professor of electrical engineering and computer science at Case, and engineering graduate student Yan Xie are growing carbon nanotube bridges in their lab that automatically attach themselves to other components without the help of an applied electrical current.

Carbon nanotubes, discovered just 14 years ago, are stronger than steel and as flexible as plastic, conduct energy better than almost any material ever discovered and can be made from ordinary raw materials such as methane gas. In a relatively short time, carbon nanotubes - thin tubes of carbon atoms that have unusual characteristics because of their unique structure - have emerged as a "miracle material" that could revolutionize a number of industries, especially the small electronics industry.

What makes this discovery significant, Tabib-Azar says, is that, while there are some technical issues yet to be addressed, carbon nanotube bridges may open the door for manufacturers to utilize carbon nanotubes in building the tiniest computer and communication chips. Carbon nanotubes are being explored for many applications in nanoelectronics, nano-electromechanical systems, biosensors, nano-composites, advanced functional materials and meta-materials.

New and cheaper ways to grow carbon nanotubes can improve companies' competitive edge, says Tabib-Azar. The researchers' method is much less expensive and quicker to perform and results in a self-assembled network of carbon nanotube devices.

Tabib-Azar likens making today's computer and cell phone chips to building a table by chopping down a tree and eliminating the unwanted portions until you end up with a flat surface with four legs. He and Xie discovered that you can grow building blocks of ultra large scale integrated circuits by growing self-assembled and self-welded carbon nanotubes much the same way you'd build that table. However, instead of chopping down the whole tree, all you have to do is create the "seeds" to grow what you need. In other words, Tabib-Azar and Xie have found the seeds to grow just the carbon nanotubes that are needed without wasting the entire "tree."

"Our approach is like growing a table using a 'table seed,' said Tabib-Azar. "By growing the electronic circuits rather than chopping down and eliminating unwanted regions of different layers, our approach has the potential of producing very complex chips with superior computational properties and at the same time being less wasteful and more in tune with the way nature 'builds' complex structures."

"Electronics is at the heart of global competition among superpowers," he continued. "And it's important to note that the electronics world market is an $850 billion industry."

Tabib-Azar predicts that within five to 10 years the United States' ability to double the number of switches per chip every 18 months will be diminished if American electronics companies don't remain competitive.

In order to use carbon nanotubes in electronics where they may greatly benefit device performance and enable cramming in more devices per chip, the nanotubes should be connected to electrical contacts. Until now, the researchers say, to connect carbon nanotubes to electrical contacts, very high precision tools such as atomic force microscopes were used that made the resulting devices very expensive. Or, in the past, researchers have used electric forces to grow carbon nanotubes between two contacts. Both these techniques result in a very few devices and can't be used for producing a large number of switches and devices in a cost-effective way.

"There are many research efforts in the U.S. and across the world to invent and discover the transistors and switches that will be more suitable to chips used in cell phones and computers beyond 2010-2015," said Tabib-Azar. "Carbon nanotubes have emerged as one of the candidates to carry the electronics industry forward."

The research is partially supported by the National Science Foundation's NER Program, the Semiconductor Research Corp. and the National Institute of Standards and Technology.

####


About the Case School of Engineering
The Case School of Engineering, which is celebrating its 125th anniversary in 2005, has distinctive and acclaimed research programs, including biomedical engineering, functional polymers, fuel cells, advanced materials, microgravity fluid flow and combustion, biologically inspired robots, sensors and microfabrication. Research awards at the school have more than doubled since 2001 to nearly $60 million.

About Case Western Reserve University
Case is among the nation’s leading research institutions. Founded in 1826 and shaped by the unique merger of the Case Institute of Technology and Western Reserve University, Case is distinguished by its strengths in education, research, service, and experiential learning. Located in Cleveland, Case offers nationally recognized programs in the Arts and Sciences, Dental Medicine, Engineering, Law, Management, Medicine, Nursing, and Social Sciences. .



Contact:
Contact: Laura Massie
(216) 368-4442
laura.massie@case.edu

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Chip Technology

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Nanoelectronics

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN December 22nd, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project