Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Case Researchers “Grow” Carbon Nanotubes, Cheaper, Faster

Abstract:
Development could lead to smaller but more powerful computers and electronic communication devices

Case Researchers “Grow” Carbon Nanotubes, the Basic Building Blocks of Nanotechnology, in Lab Using Faster, Cheaper Means

Case Western Reserve University

Cleveland, OH | April 14, 2005

A Case Western Reserve University engineer has created the "seeds" that can grow into today's and tomorrow's computer and phone chips.

In a development that could lead to smaller but more powerful computers and electronic communication devices, Massood Tabib-Azar, a professor of electrical engineering and computer science at Case, and engineering graduate student Yan Xie are growing carbon nanotube bridges in their lab that automatically attach themselves to other components without the help of an applied electrical current.

Carbon nanotubes, discovered just 14 years ago, are stronger than steel and as flexible as plastic, conduct energy better than almost any material ever discovered and can be made from ordinary raw materials such as methane gas. In a relatively short time, carbon nanotubes - thin tubes of carbon atoms that have unusual characteristics because of their unique structure - have emerged as a "miracle material" that could revolutionize a number of industries, especially the small electronics industry.

What makes this discovery significant, Tabib-Azar says, is that, while there are some technical issues yet to be addressed, carbon nanotube bridges may open the door for manufacturers to utilize carbon nanotubes in building the tiniest computer and communication chips. Carbon nanotubes are being explored for many applications in nanoelectronics, nano-electromechanical systems, biosensors, nano-composites, advanced functional materials and meta-materials.

New and cheaper ways to grow carbon nanotubes can improve companies' competitive edge, says Tabib-Azar. The researchers' method is much less expensive and quicker to perform and results in a self-assembled network of carbon nanotube devices.

Tabib-Azar likens making today's computer and cell phone chips to building a table by chopping down a tree and eliminating the unwanted portions until you end up with a flat surface with four legs. He and Xie discovered that you can grow building blocks of ultra large scale integrated circuits by growing self-assembled and self-welded carbon nanotubes much the same way you'd build that table. However, instead of chopping down the whole tree, all you have to do is create the "seeds" to grow what you need. In other words, Tabib-Azar and Xie have found the seeds to grow just the carbon nanotubes that are needed without wasting the entire "tree."

"Our approach is like growing a table using a 'table seed,' said Tabib-Azar. "By growing the electronic circuits rather than chopping down and eliminating unwanted regions of different layers, our approach has the potential of producing very complex chips with superior computational properties and at the same time being less wasteful and more in tune with the way nature 'builds' complex structures."

"Electronics is at the heart of global competition among superpowers," he continued. "And it's important to note that the electronics world market is an $850 billion industry."

Tabib-Azar predicts that within five to 10 years the United States' ability to double the number of switches per chip every 18 months will be diminished if American electronics companies don't remain competitive.

In order to use carbon nanotubes in electronics where they may greatly benefit device performance and enable cramming in more devices per chip, the nanotubes should be connected to electrical contacts. Until now, the researchers say, to connect carbon nanotubes to electrical contacts, very high precision tools such as atomic force microscopes were used that made the resulting devices very expensive. Or, in the past, researchers have used electric forces to grow carbon nanotubes between two contacts. Both these techniques result in a very few devices and can't be used for producing a large number of switches and devices in a cost-effective way.

"There are many research efforts in the U.S. and across the world to invent and discover the transistors and switches that will be more suitable to chips used in cell phones and computers beyond 2010-2015," said Tabib-Azar. "Carbon nanotubes have emerged as one of the candidates to carry the electronics industry forward."

The research is partially supported by the National Science Foundation's NER Program, the Semiconductor Research Corp. and the National Institute of Standards and Technology.

####


About the Case School of Engineering
The Case School of Engineering, which is celebrating its 125th anniversary in 2005, has distinctive and acclaimed research programs, including biomedical engineering, functional polymers, fuel cells, advanced materials, microgravity fluid flow and combustion, biologically inspired robots, sensors and microfabrication. Research awards at the school have more than doubled since 2001 to nearly $60 million.

About Case Western Reserve University
Case is among the nation’s leading research institutions. Founded in 1826 and shaped by the unique merger of the Case Institute of Technology and Western Reserve University, Case is distinguished by its strengths in education, research, service, and experiential learning. Located in Cleveland, Case offers nationally recognized programs in the Arts and Sciences, Dental Medicine, Engineering, Law, Management, Medicine, Nursing, and Social Sciences. .



Contact:
Contact: Laura Massie
(216) 368-4442
laura.massie@case.edu

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Chip Technology

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies Names NanoSperse as A SWeNT Certified Compounder July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

Nanoelectronics

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE