Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Dropping nano-anchor

Abstract:
PNNL-led group controls loading of functional 'anchor' molecules on carbon nanotubes without encumbering tubes' strength, conductivity

Dropping nano-anchor

San Diego, CA | March 17, 2005

Touch the tines of a tuning fork and it goes silent. Scientists have faced a similar problem trying to harness the strength and conductivity of carbon nanotubes, regarded as material of choice for the next generation of everything from biosensors to pollution-trapping sponges.

Fifield reported the group's findings today at the American Chemical Society national meeting. In the decade since the synthesis of the first carbon nanotubes, researchers have attached molecules—intended to be the "feelers" for picking up chemical sensations and passing the information to the nanotube—using techniques that call for strong acidity and other harsh conditions that compromise the material's utility.

"Usually, people use an organic solution of anchors and incubate the nanotubes in the solution to deposit the anchors," Fifield said. "This method allows little control over the level of anchor loading. Our innovation is the use of supercritical fluids—carbon dioxide, with both liquid and gas properties—for anchor deposition."

Their technique allows them "to deposit anchors on a wide variety of nanotube sample types, including those not easily incubated in solution," Fifield said. "It also enables us to control how much of a nanotube surface is coated with molecules and the thickness of the coating."

###

PNNL (www.pnl.gov) is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,900, has a $650 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.



Contact:
Bill Cannon
(509) 375-3732
cannon@pnl.gov

Copyright © PNL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Discoveries

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE