Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Dropping nano-anchor

Abstract:
PNNL-led group controls loading of functional 'anchor' molecules on carbon nanotubes without encumbering tubes' strength, conductivity

Dropping nano-anchor

San Diego, CA | March 17, 2005

Touch the tines of a tuning fork and it goes silent. Scientists have faced a similar problem trying to harness the strength and conductivity of carbon nanotubes, regarded as material of choice for the next generation of everything from biosensors to pollution-trapping sponges.

Fifield reported the group's findings today at the American Chemical Society national meeting. In the decade since the synthesis of the first carbon nanotubes, researchers have attached molecules—intended to be the "feelers" for picking up chemical sensations and passing the information to the nanotube—using techniques that call for strong acidity and other harsh conditions that compromise the material's utility.

"Usually, people use an organic solution of anchors and incubate the nanotubes in the solution to deposit the anchors," Fifield said. "This method allows little control over the level of anchor loading. Our innovation is the use of supercritical fluids—carbon dioxide, with both liquid and gas properties—for anchor deposition."

Their technique allows them "to deposit anchors on a wide variety of nanotube sample types, including those not easily incubated in solution," Fifield said. "It also enables us to control how much of a nanotube surface is coated with molecules and the thickness of the coating."

###

PNNL (www.pnl.gov) is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,900, has a $650 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.



Contact:
Bill Cannon
(509) 375-3732
cannon@pnl.gov

Copyright © PNL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Discoveries

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project