Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Ceria Nanoparticles Catalyze Reactions for Cleaner-Fuel Future

Abstract:
Discovery may lead to catalytic converters that are better at cleaning up auto exhaust, and/or to more-efficient ways of generating hydrogen.

Ceria Nanoparticles Catalyze Reactions for Cleaner-Fuel Future

San Diego, CA | March 15, 2005

Experiments on ceria (cerium oxide) nanoparticles carried out at the U.S. Department of Energy's Brookhaven National Laboratory may lead to catalytic converters that are better at cleaning up auto exhaust, and/or to more-efficient ways of generating hydrogen -- a promising zero-emission fuel for the future. Brookhaven chemist Jose Rodriguez will present results from two studies exploring the composition, structure, and reactivity of these versatile nanoparticles during the 229th National Meeting of the American Chemical Society on Tuesday, March 15, at 8:15 a.m. in room Del Mar A of the Hyatt Regency, San Diego, California.

After using a novel technique to synthesize the ceria nanoparticles, Rodriguez and coworkers Xianqin Wang and Jonathan Hanson used bright beams of x-rays at the National Synchrotron Light Source to study how their composition, structure, and reactivity changed in response to doping with zirconium in one case, and impregnation with gold in another.

"In a catalytic converter, ceria acts as a buffer, absorbing or releasing oxygen, depending on the conditions of the engine, to maintain the catalyst in its optimum operating condition for converting harmful emissions such as carbon monoxide and nitrogen oxide to carbon dioxide and nitrogen gas," Rodriguez said. Others have found that adding zirconium improves ceria's ability to store and release oxygen.

The synchrotron studies at Brookhaven explain why: Zirconium changes the ceria's structure to increase the number of oxygen "vacancies" -- or places for oxygen uptake and release. Furthermore, Rodriguez says, "The ceria nanoparticles we studied have much better performance, higher chemical reactivity, than the bulk form of ceria currently used in catalytic converters." Thus, this research holds promise for more-efficient catalytic converters -- and cleaner air.

In the second study, Wang, Hanson, and Rodriguez deposited gold on the surface of ceria nanoparticles and used x-rays at the synchrotron to determine the catalyst's "active phase" -- the conformation responsible for the catalytic activity -- in the conversion of water and carbon monoxide to hydrogen gas and carbon dioxide. This "water-gas shift" reaction is important for generating hydrogen, which can be used for chemical transformations and as a fuel in a hydrogen-based economy. Hydrogen is one of the leading energy sources being investigated by scientists sponsored by the Department of Energy as part of its mission to ensure the nation's future energy needs.

"In both cases, we are learning about the fundamental conditions necessary for optimal operation of the catalysts," Rodriguez said. "This kind of knowledge eventually will lead to a rational design of even more effective catalysts." This research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science.

One of the ten national laboratories overseen and funded primarily by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more: www.bnl.gov/newsroom



Contact:
Media and Communications Office, Bldg. 134
Brookhaven National Laboratory
PO Box 5000
Upton, New York 11973-5000
phone: 631 344-8350 or 631 344-2345
fax: 631 344-3368
e-mail: pubaf@bnl.gov
or bulletin@bnl.gov

Copyright © BNL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Environment

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE