Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Infineon Unveils World`s Smallest Nanotube Transistor

Abstract:
Researchers construct world's smallest nanotube transistor, with a channel length of only 18 nm

Infineon Unveils World`s Smallest Nanotube Transistor

Munich, Germany – November 22, 2004

In its tireless efforts to create smaller and more powerful structures for integrated circuits, Infineon Technologies AG (FSE/NYSE: IFX) has achieved a further breakthrough in its Munich laboratories: researchers here have constructed the world's smallest nanotube transistor, with a channel length of only 18 nm - the most advanced transistors currently in production are almost four times this size. To build their nanotransistor, the researchers grew carbon nanotubes, each one measuring only 0.7 to 1.1 nm in diameter, in a controlled process. A single human hair is around 100,000 times thicker by comparison.

Using a single single-wall carbon nanotube Infineon now was able to create the world's smallest carbon nano tube field effect transistor.
Copyright © Infineon Technologies AG . Click to enlarge.

The characteristic properties of carbon nanotubes make them the ideal candidate material for many applications in microelectronics: the tubes carry electrical current virtually without friction on their surface thanks to “ballistic” electron transport and can therefore handle 1000 times more than copper wire. What’s more, they can be both conducting and semiconducting. Infineon is one of the pioneers in developing carbon nanotubes and was the first semiconductor company to demonstrate how the tubes can be grown at precisely defined locations and how transistors for switching larger currents can be constructed.

The nanotube transistor just unveiled can deliver currents in excess of 15 µA at a supply voltage of only 0.4 V (0.7 V is currently the norm). A current density some 10 times above that of silicon, today's standard material, has been observed. On the basis of the test results, Infineon researchers are confident that they can go on miniaturizing transistors at the same rate as previously. Even supply voltages as low as 0.35 V, which are according to the ITRS currently not expected before the year 2018, could be realized if carbon nanotubes are used as the material.

The research activities are funded by Germany’s Federal Ministry of Education and Research (BMBF).

About Infineon

Infineon Technologies AG, Munich, Germany, offers semiconductor and system solutions for the automotive and industrial sectors, for applications in the wired communications markets, secure mobile solutions as well as memory products. With a global presence, Infineon operates in the US from San Jose, CA, in the Asia-Pacific region from Singapore and in Japan from Tokyo. In fiscal year 2004 (ending September), the company achieved sales of Euro 7.19 billion with about 35,600 employees worldwide. Infineon is listed on the DAX index of the Frankfurt Stock Exchange and on the New York Stock Exchange (ticker symbol: IFX). Further information is available at www.infineon.com.


Media Relations Contact:
Reiner Schoenrock
Infineon Technologies AG
P.O. Box 80 09 49
D-81609 Muenchen, Germany
Phone: +49-89-234-29593
Fax: +49-89-234-28482
reiner.schoenrock@infineon.com

Copyright © Infineon Technologies AG

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Chip Technology

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanoelectronics

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project