Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Infineon Unveils World`s Smallest Nanotube Transistor

Abstract:
Researchers construct world's smallest nanotube transistor, with a channel length of only 18 nm

Infineon Unveils World`s Smallest Nanotube Transistor

Munich, Germany – November 22, 2004

In its tireless efforts to create smaller and more powerful structures for integrated circuits, Infineon Technologies AG (FSE/NYSE: IFX) has achieved a further breakthrough in its Munich laboratories: researchers here have constructed the world's smallest nanotube transistor, with a channel length of only 18 nm - the most advanced transistors currently in production are almost four times this size. To build their nanotransistor, the researchers grew carbon nanotubes, each one measuring only 0.7 to 1.1 nm in diameter, in a controlled process. A single human hair is around 100,000 times thicker by comparison.

Using a single single-wall carbon nanotube Infineon now was able to create the world's smallest carbon nano tube field effect transistor.
Copyright © Infineon Technologies AG . Click to enlarge.

The characteristic properties of carbon nanotubes make them the ideal candidate material for many applications in microelectronics: the tubes carry electrical current virtually without friction on their surface thanks to “ballistic” electron transport and can therefore handle 1000 times more than copper wire. What’s more, they can be both conducting and semiconducting. Infineon is one of the pioneers in developing carbon nanotubes and was the first semiconductor company to demonstrate how the tubes can be grown at precisely defined locations and how transistors for switching larger currents can be constructed.

The nanotube transistor just unveiled can deliver currents in excess of 15 µA at a supply voltage of only 0.4 V (0.7 V is currently the norm). A current density some 10 times above that of silicon, today's standard material, has been observed. On the basis of the test results, Infineon researchers are confident that they can go on miniaturizing transistors at the same rate as previously. Even supply voltages as low as 0.35 V, which are according to the ITRS currently not expected before the year 2018, could be realized if carbon nanotubes are used as the material.

The research activities are funded by Germany’s Federal Ministry of Education and Research (BMBF).

About Infineon

Infineon Technologies AG, Munich, Germany, offers semiconductor and system solutions for the automotive and industrial sectors, for applications in the wired communications markets, secure mobile solutions as well as memory products. With a global presence, Infineon operates in the US from San Jose, CA, in the Asia-Pacific region from Singapore and in Japan from Tokyo. In fiscal year 2004 (ending September), the company achieved sales of Euro 7.19 billion with about 35,600 employees worldwide. Infineon is listed on the DAX index of the Frankfurt Stock Exchange and on the New York Stock Exchange (ticker symbol: IFX). Further information is available at www.infineon.com.


Media Relations Contact:
Reiner Schoenrock
Infineon Technologies AG
P.O. Box 80 09 49
D-81609 Muenchen, Germany
Phone: +49-89-234-29593
Fax: +49-89-234-28482
reiner.schoenrock@infineon.com

Copyright © Infineon Technologies AG

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Let the europium shine brighter January 21st, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Chip Technology

Toward safer disposal of printed circuit boards January 16th, 2020

Generation and Manipulation of spin currents for advanced electronic devices January 9th, 2020

NUS scientists create world’s first monolayer amorphous film January 9th, 2020

Onto Innovation to Present at the 22nd Annual Needham Growth Conference January 3rd, 2020

Nanotubes/Buckyballs/Fullerenes/Nanorods

The first highway trials show that nanotube-reinforced asphalt concrete prevents cracks and ruts January 16th, 2020

A new approach to making airplane parts, minus the massive infrastructure: Carbon nanotube film produces aerospace-grade composites with no need for huge ovens or autoclaves. January 13th, 2020

Color superlensing to assist in surpassing diffraction barrier: A paper by Kazan Federal University's Sergey Kharintsev appeared in Optics Letters January 3rd, 2020

Buckyballs release electron-positron pairs in forward directions: Theoretical calculations reveal that when impacted by positrons of particular energies, spherical nanoparticles release unstable electron-positron pairs, with signals dominating in the same direction as the incomin December 27th, 2019

Nanoelectronics

FEFU scientists participate in development of ceramic materials that are IR-transparent December 27th, 2019

In leap for quantum computing, silicon quantum bits establish a long-distance relationship: Princeton scientists demonstrate that two silicon quantum bits can communicate across relatively long distances in a turning point for the technology December 27th, 2019

Saving Moore’s Law: Electrical and computer engineering researchers propose 3D integration with 2D materials December 27th, 2019

New laser technique images quantum world in a trillionth of a second: Technique captures a process that commonly causes electrical resistance in materials while, in others, can cause the absence of resistance, or superconductivity December 13th, 2019

Announcements

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project