Home > Press > Infineon Unveils World`s Smallest Nanotube Transistor
Abstract:
Researchers construct world's smallest nanotube transistor, with a channel length of only 18 nm
In its tireless efforts to create smaller and more powerful structures for integrated circuits, Infineon Technologies AG (FSE/NYSE: IFX) has achieved a further breakthrough in its Munich laboratories: researchers here have constructed the world's smallest nanotube transistor, with a channel length of only 18 nm - the most advanced transistors currently in production are almost four times this size. To build their nanotransistor, the researchers grew carbon nanotubes, each one measuring only 0.7 to 1.1 nm in diameter, in a controlled process. A single human hair is around 100,000 times thicker by comparison.
![]() Using a single single-wall carbon nanotube Infineon now was able to create the world's smallest carbon nano tube field effect transistor.
|
The characteristic properties of carbon nanotubes make them the ideal candidate material for many applications in microelectronics: the tubes carry electrical current virtually without friction on their surface thanks to “ballistic” electron transport and can therefore handle 1000 times more than copper wire. What’s more, they can be both conducting and semiconducting. Infineon is one of the pioneers in developing carbon nanotubes and was the first semiconductor company to demonstrate how the tubes can be grown at precisely defined locations and how transistors for switching larger currents can be constructed.
The nanotube transistor just unveiled can deliver currents in excess of 15 µA at a supply voltage of only 0.4 V (0.7 V is currently the norm). A current density some 10 times above that of silicon, today's standard material, has been observed. On the basis of the test results, Infineon researchers are confident that they can go on miniaturizing transistors at the same rate as previously. Even supply voltages as low as 0.35 V, which are according to the ITRS currently not expected before the year 2018, could be realized if carbon nanotubes are used as the material.
The research activities are funded by Germany’s Federal Ministry of Education and Research (BMBF).
About Infineon
Infineon Technologies AG, Munich, Germany, offers semiconductor and system solutions for the automotive and industrial sectors, for applications in the wired communications markets, secure mobile solutions as well as memory products. With a global presence, Infineon operates in the US from San Jose, CA, in the Asia-Pacific region from Singapore and in Japan from Tokyo. In fiscal year 2004 (ending September), the company achieved sales of Euro 7.19 billion with about 35,600 employees worldwide. Infineon is listed on the DAX index of the Frankfurt Stock Exchange and on the New York Stock Exchange (ticker symbol: IFX). Further information is available at www.infineon.com.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Possible Futures
New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023
Graphene grows – and we can see it March 24th, 2023
HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Chip Technology
Graphene grows – and we can see it March 24th, 2023
Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023
Semiconductor lattice marries electrons and magnetic moments March 24th, 2023
Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023
Nanotubes/Buckyballs/Fullerenes/Nanorods
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
Nanoelectronics
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022
Announcements
Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023
Semiconductor lattice marries electrons and magnetic moments March 24th, 2023
Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023
Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |