Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > USTC enhances fluorescence brightness of single silicon carbide spin color centers

Abstract:
In a study published online in Nano Letters, the team led by Prof. LI Chuanfeng and Dr. XU Jinshi from the University of Science and Technology of China of the Chinese Academy of Sciences made progress in enhancing the fluorescence of single silicon carbide spin defects. The researchers leveraged surface plasmons to markedly boost the fluorescence brightness of single silicon carbide double vacancy PL6 color centers, leading to an improvement in the efficiency of spin control using the properties of co-planar waveguides. This low-cost method neither calls for complex micro-nano processing technology nor compromises the coherence properties of the color centers.

USTC enhances fluorescence brightness of single silicon carbide spin color centers

Hefei, China | Posted on June 9th, 2023

Spin color centers in solid-state systems are crucial for quantum information processing, and the brightness of their fluorescence is a vital parameter for practical quantum applications. Traditionally, enhancing the fluorescence of spin color centers involves coupling them with solid-state micro-nanostructures, a common method encompassing various schemes such as the fabrication of solid immersion lenses, nanopillars, bull's eye structures, photonic crystal microcavities, and fiber cavities. Nevertheless, challenges remain such as the susceptibility of color center spin properties to complex micro-nano fabrication processes, and the difficulty of aligning specific color centers with micro-nano structures.

Pioneering a new approach, the team used plasmons to enhance the fluorescence of spin centers in silicon carbide. The researchers prepared a silicon carbide thin film of about 10 micrometers in thickness via chemical and mechanical polishing. They used ion implantation technology to create near-surface divacancy color centers in the film. The film was flipped and adhered to a silicon wafer coated with a coplanar gold waveguide, utilizing van der Waals forces. This positioning allowed the near-surface color centers to come under the influence of the surface plasmons of the gold waveguide, thereby enhancing the fluorescence of the color centers.

With an objective lens (with a numerical aperture of 0.85) and the enhancement effect of surface plasmons, the researchers achieved a seven-fold enhancement of the brightness of a single PL6 color center. With an oil lens with a numerical aperture of 1.3, the fluorescence of the color center exceeded one million counts per second.

Besides, the researchers managed to precisely manipulate the distance between the near-surface color center and the coplanar waveguide by adjusting the film thickness with a reactive ion etching process, which allowed them to study the optimal range of operation. Apart from generating surface plasmons, the coplanar gold waveguide can be used to efficiently radiate microwaves, significantly improving the efficiency of spin control. The coplanar waveguide increased the Rabi frequency of a single PL6 color center by 14 times under the same microwave power compared with that in conventional microwave radiation methods.

Moreover, the researchers investigated the mechanism of fluorescence enhancement. By fitting the autocorrelation function using a three-level model and measuring the non-resonant excitation fluorescence lifetime, they confirmed that surface plasmons enhanced the fluorescence brightness by increasing the radiative transition rate of the color center energy level. They also found that as the interaction distance decreased, the quenching effect of surface plasmons resulted in a decay in the fluorescence brightness of the color center.

This work marks the first implementation of plasmon-enhanced fluorescence from near-surface spin color centers in silicon carbide films. The preparation of the coplanar gold waveguide is straightforward without intricate enhancement structures or alignment processes. This method also enhances the fluorescence of other spin color centers in silicon carbide, representing a significant step forward in applying silicon carbide materials to the field of quantum science.

####

For more information, please click here

Contacts:
Jane Fan
University of Science and Technology of China

Copyright © University of Science and Technology of China

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project