Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Light meets deep learning: computing fast enough for next-gen AI

A team of Greek academic researchers and California entrepreneurs benchmarked their Silicon Photonic (SiPho) neural network technology against processing unit currently on the market and six-year-old technology with projections.

CREDIT
Authors of publication
A team of Greek academic researchers and California entrepreneurs benchmarked their Silicon Photonic (SiPho) neural network technology against processing unit currently on the market and six-year-old technology with projections. CREDIT Authors of publication

Abstract:
Artificial intelligence (AI) models are essential for sophisticated image classification, the most important part of digital analysis. The researchers who recently published “Universal Linear Optics Revisited: New Perspectives for Neuromorphic Computing with Silicon Photonics” have moved the needle for image classification. The speeds they’ve achieved on a new chip platform (silicon photonics) using the computational power of neural networks is impressive.

Light meets deep learning: computing fast enough for next-gen AI

Piscataway, NJ | Posted on March 24th, 2023

Nonetheless, pay attention here to the modal auxiliary verb “can.” Just because something can be done, questions remain. Will it be fast enough? Will it have sufficient accuracy? How energy efficient is it? Is the chip large and unwieldly? This research tackles them all.

One of the attributes of AI is that you can use it at the edge of the physical network; in a camera for example. A camera on a drone is an even better example. To enable a drone with AI, you want the on-board AI chip to be powerful, but energy efficient, small and lightweight, and able to do lots of complex math at lightning speed. That way, the drone can alert humans when something untoward is detected (cancer, a saboteur, damage to a train-track).

Meanwhile, in Greece, researchers have built a neuromorphic photonic processor computing at a speed of 50 GHz that is capable to classify images with ~95% accuracy. Let’s break this down, starting with the photonic part.

After Silicon Electronics? Silicon Photonics.

AI processor chips often start life as graphic processing units (GPUs) for high-end video games or tensor processing units (TPUs) which are specifically designed for neural networks, meaning computation mimicking the human brain. (Except that they like linear algebra!) However conventional processors use silicon electronics as the physical platform, which is reaching quantum limitations.

Switching from electrons to photons increases computational ability because the speed of light is so much faster than the speed of electrons. It’s more energy efficient too. The “wires” don’t heat up. The physics of light can be used for matrix-vector multiplication operations, the computational backbone of neural networks.

After Conventional Math? Neuromorphic Computing with Trillions of Operations per Second

Now the neuromorphic part. The Greek research team, along with Celestial AI, developed a novel design for the chip using a crossbar layout. The layout outperforms the state-of-the-art photonic counterparts in terms of scalability, technical versatility, ease of programming and error tolerance. Said differently, by combining the crossbar layout’s architectural benefits with SiGe electro-absorption modulators employed in their first prototype, the researchers project that a purely optical implementation can perform trillions of matrix-vector multiplications per second, without sacrificing the processing accuracy, while consuming very low power.

Compared with six years ago, silicon photonics is in a much better position to pull neural morphic processors from their currently low computational and physical size (footprint) efficiency to less unwieldy. Notice in Figure 1 the placement of IBM’s TrueNorth chip, Intel’s Loihi chip, the HICANN (High Input Count Analog Neural Network) chip from Germany’s Heidelberg University and Stanford U’s neurogrid device. Compare it to the crossbar-layout chips discussed here, which are falling right along silicon photonics roadmap in terms of computation and size efficiency. The synergy of powerful photonics with the novel crossbar architecture can enable next generation neuromorphic computing engines. Let’s change that that modal auxiliary verb to “will.”

####

For more information, please click here

Contacts:
Media Contact

Kristen Mahan
Institute of Electrical and Electronics Engineers

Expert Contact

Kristen Mahan
IEEE

Office: 17322723320

Copyright © Institute of Electrical and Electronics Engineers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Optical computing/Photonic computing

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Artificial Intelligence

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project