Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists reveal the effect of Cu(I) structure on quantum sieving for hydrogen isotope separation

The separation mechanism of D2/H2 mixture in Cu(I)Cu(II)-BTC.

CREDIT
HU Xiaoyu
The separation mechanism of D2/H2 mixture in Cu(I)Cu(II)-BTC. CREDIT HU Xiaoyu

Abstract:
Recently, a research team led by Prof. CHEN Changlun from Institute of Plasma Physics, Hefei Institutes of Physical Science of Chinese Academy of Sciences, studied Cu(I)Cu(II)-BTC, a kind of hydrogen isotope separation material and proved its crucial role in tuning quantum sieving without a complex structural design, which provided a new strategy for the intelligent design of highly efficient isotope systems.

Scientists reveal the effect of Cu(I) structure on quantum sieving for hydrogen isotope separation

Hefei, China | Posted on February 10th, 2023

The result was published in ACS Applied Materials & Interfaces.

High pure deuterium (D2) is an important industrial and scientific gas, which has been widely used as an irreplaceable raw material, neutron moderator, isotopic tracer, and in other fields. Despite the huge demand for it, the mole fraction of natural deuterium is only up to 0.0156% of natural hydrogen in the oceans. Moreover, D2 and its isotope (H2 or T2) molecules have almost identical classical dimensions, associated with very similar physicochemical properties, and the separation of hydrogen isotope mixtures in high purity has been considered as one of the greatest difficulties and challenges in modern separation technology.

In this study, HKUST-1 crystals in the presence of hydroquinone were reduced to construct Cu(I)Cu(II)-BTC, featured by dual micropore size distribution and mixed-valence of Cu metal, and had been chosen to study H2/D2 separation in detail.

The study showed that unique Cu(I) and Cu(II) coordination network of Cu(I)Cu(II)-BTC could significantly facilitate D2/H2 isotope separation. Density functional theory (DFT) calculations indicated that the introduction of Cu(I) macrocycles in the framework decreased the pore size and further led to relatively enhanced interaction of H2/D2 molecules on Cu(II) sites. The significantly enhanced selectivity of Cu(I)Cu(II)-BTC at 30 K was mainly attributed to the synergistic effect of kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS).

In addition, a large angle of 156° for the O-Cu(I)-O configuration in Cu(I)Cu(II)-BTC exhibited weak binding strength of hydrogen adsorption since the dz2 orbital and small positive of Cu(I) couldn't effectively participate in the hydrogen interaction, and didn't show a strong CAQS effect at above liquid nitrogen temperature.

This research verified the effect of Cu(I) structure in D2/H2 separation. "We believe that this study will provide a new strategy for reasonable design of porous materials with OMSs at highly efficient isotope and gas separation systems," said HU Xiaoyu, first author of the paper.

####

For more information, please click here

Contacts:
Weiwei Zhao
Hefei Institutes of Physical Science, Chinese Academy of Sciences

Office: 86-551-655-91206

Copyright © Hefei Institutes of Physical Science, Chinese Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project