Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers create a new 3D extra-large pore zeolite that opens a new path to the decontamination of water and gas: A team of scientists with the participation of the CSIC develops an extra-large pore silica zeolite from a silicate chain

Image of the structure of ZEO-3, a new extra-large pore silica zeolite. / ICMM-CSIC

CREDIT
ICMM-CSIC
Image of the structure of ZEO-3, a new extra-large pore silica zeolite. / ICMM-CSIC CREDIT ICMM-CSIC

Abstract:
An international team of researchers with the participation of the Spanish National Research Council (CSIC) has created the most porous stable zeolite known to date, a new pure silica zeolite called ZEO-3. This zeolite was formed by an unprecedented topotactic condensation of a 1D silicate chain to a 3D zeolite. The process is topotactic because the structure of the chain is not altered. It can be applied to remove and recover volatile organic compounds from a gas stream that may even contain water. The discovery, to which scientists from the Institute of Materials Sciences of Madrid (ICMM-CSIC) and the Institute of Nanoscience and Materials of Aragon (INMA-CSIC-UNIZAR) have contributed, is published in the journal Science.

Researchers create a new 3D extra-large pore zeolite that opens a new path to the decontamination of water and gas: A team of scientists with the participation of the CSIC develops an extra-large pore silica zeolite from a silicate chain

Madrid, Spain | Posted on January 20th, 2023

Zeolites are microporous silicates that find an ample variety of applications as catalysts, adsorbents, and cation exchangers. Stable silica-based zeolites with increased porosity are in demand to allow adsorption and processing of large molecules, "but challenge our synthetic ability", explains Miguel Camblor, researcher at ICMM and one of the correspondening authors of the research.

As the zeolites pores have are the size of small molecules, there is a limitation on the size of molecules you can process. That is why Zeolites with larger pores "have always been sought" and, specially, those with inpores along 3 dimensions: "because when you have a pore in only one direction, even if it is large, it is easy for it to be blocked, but if you have them in all dimensions, it's difficult,” Camblor points out.

After more than 80 years of extensive international research in this field, this team has created the most porous stable zeolite known so far. "Until now, the zeolites with extra-large pores were not stable, as they were made by germanium instead of siliconm", he says. Previous stable zeolites could reach up to 7 angstroms (1 angstrom is a hundred-millionth of a centimetre).

Last year, this team of researchers published another article in Science about a new zeolite with aluminum and large pores (ZEO-1). Now, the new zeolite has a composition of pure silica. “In both zeolites, ZEO-1 and ZEO-3, there are pores that reach more than 10 angstroms,” says Camblor.

The peculiarities of ZEO-3

This new zeolite has two peculiarities: extra-large pores in all three dimensions and it is formed though the synthesisby calcination of a one-dimensional chain silicate in a topotactic condensation (what means it was made without changes in this chain).

"This had never been seen before," congratules Camblor. "Two-dimensional to three-dimensional topotactic condensations were known, that is, a thing that was lamellar and that by a similar mechanism condensed to give a zeolite, but not from one-dimensional to three-dimensional," he adds.

After the creation of this zeolite the team, with researchers also from Sweden, China and USA, started to experiment its properties: "Since this is a material that is pure silica, it does not have a catalytic capacity, but it has a capacity to absorb very large things. Big organic stuff," says Camblor.

"This zeolite can be applied to remove and recover volatile organic compounds from a gas stream that may even contain water", he explains. "In a site where harmful volatile organic materials are being produced, you can decontaminate and not just remove it but recover itthe contaminant", Camblor ilustrates. With further research this zeolite could be also useful at catalysis and in drug delivery.

####

For more information, please click here

Contacts:
Maria Gonzalez
Spanish National Research Council (CSIC)

Office: 0034-915-681-819
Ángela R. Bonachera
Spanish National Research Council (CSIC)

Copyright © Spanish National Research Council (CSIC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Chemistry

Dual-site collaboration boosts electrochemical nitrogen reduction on Ru-S-C single-atom catalyst January 6th, 2023

Rapid fluorescent mapping of electrochemically induced local pH changes December 9th, 2022

New method of reducing carbon dioxide could be a golden solution to pollution December 9th, 2022

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Zeolites

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

Possible Futures

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Discoveries

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Announcements

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

Environment

Temperature-sensing building material changes color to save energy January 27th, 2023

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

New nanowire sensors are the next step in the Internet of Things January 6th, 2023

New method of reducing carbon dioxide could be a golden solution to pollution December 9th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project