Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Experimental nanosheet material marks a step toward the next generation of low-power, high-performance electronics

Abstract:
A team of researchers in China have developed a high-conductivity material that could greatly reduce contact resistance and Schottky barrier height within critical parts of electronic and optoelectronic microchips, paving the way for computer and digital imaging components that consume less power relative to their performance than existing chipsets. The material, molybdenum disulfide (MoS2) is so thin that it falls into a classification of two-dimensional. That is, it is grown in sheets extending in two directions, X and Y, but virtually immeasurable on a Z axis because the material is often only a single molecule or atom in height.

Experimental nanosheet material marks a step toward the next generation of low-power, high-performance electronics

Tsinghua, China | Posted on December 9th, 2022

In the article, “Epitaxial van der Waals Contacts for Low Schottky Barrier MoS2 Field Effect Transistors,” the authors emphasize how 2D materials have attracted tremendous attention due to their abundant and tunable electronic states and diverse optical, electronic, and mechanical properties, which make them promising building blocks for future high-performance electronic and optoelectronic devices, such as transistors, photodetectors, and light-emitting diodes. The experiment was an effort to address “The performance of a 2D semiconductor transistor mainly relies on the microscopic connections among components within a chip, and the quality of those connections depends ultimately on the material used in these contact points, which are always metals achieved by thermal evaporation, limiting the performance of 2D materials-based transistors," Li said.



In an effort to develop a higher-performing contact point, Li’s team employed Bismuth Telluride (Bi2Te3), a highly conductivemetalloid and semimetal in combination with semi-conducting MoS2. Growing these metalloid nanosheet crystals together as a hybrid yielded initially promising results.



“Attempts in recent years to achieve epitaxially grown semiconductor contacts have succeeded in laboratory settings, but weren’t likely candidates for being scaled up to the level that would be needed to manufacture chips and other devices,” Li said. “Most of these methods put forward strict requirements for material preparation and strict fabrication and are hardly compatible with further manufacturing processes in integrated circuits. The realization of high-quality semiconducting 2D materials and excellent contact at the same time is critical for reliable device applications.”



The process of fabricating this experimental van der Waals contact involved vertically stacking MoS2 and Bi2Te3 in a two-step synthesis process. As the growth of MoS2 monolayer, molybdenum trioxide (MoO3) powder and sulfur powder were placed at the center and upper stream of the furnace, respectively, and a piece of Silicon dioxide (SiO2) substrate was placed downstream of a quartz tube. For the second step growth of the Bi2Te3 nanosheet, the Bi2Te3 powder and the as-grown MoS2 nanosheets were placed at the center and downstream of the quartz tube, respectively. After 5 minutes of growth, MoS2/Bi2Te3 heterostructures were obtained.. The researchers observed that the growth temperature and gas flow rate during the growth process could influence the thickness and nucleation sites of the Bi2Te3 nanosheets.



The team used a variety of electrical and imaging techniques to observe the appearance and conductive performance of the hybrid nanosheets and found that the new contact method greatly outperformed gold contacts, which are useful as a baseline measurement because of how common gold is in chip manufacturing. The new contact method was tested at different ambient temperatures and maintained good performance at room temperature – a key milestone in making MoS2/Bi2Te3 semiconducting contact method a good candidate for future commercial viability.



“Combining the multiple advantages, the epitaxial van der Waals Bi2Te3 contacts provide a new strategy for the application of 2D MoS2 in future optoelectronic devices,” Li said. “Now that we’ve established the functionality of Bi2Te3 contacts in a controlled laboratory setting, the next steps will be to continue to investigate and optimize this method, with the hope that this new technology can eventually be adopted for widespread use in more powerful, lower energy consumption electronics.”

####

About Tsinghua University Press
Established in 1980, belonging to Tsinghua University, Tsinghua University Press (TUP) is a leading comprehensive higher education and professional publisher in China. Committed to building a top-level global cultural brand, after 41 years of development, TUP has established an outstanding managerial system and enterprise structure, and delivered multimedia and multi-dimensional publications covering books, audio, video, electronic products, journals and digital publications. In addition, TUP actively carries out its strategic transformation from educational publishing to content development and service for teaching & learning and was named First-class National Publisher for achieving remarkable results.

About Nano Research



Nano Research is a peer-reviewed, international and interdisciplinary research journal, publishes all aspects of nano science and technology, featured in rapid review and fast publishing, sponsored by Tsinghua University and the Chinese Chemical Society. It offers readers an attractive mix of authoritative and comprehensive reviews and original cutting-edge research papers. After 15 years of development, it has become one of the most influential academic journals in the nano field. In 2022 InCites Journal Citation Reports, Nano Research has an Impact Factor of 10.269 (9.136, 5 years), the total cites reached 29620, ranking first in China's international academic journals, and the number of highly cited papers reached 120, ranked among the top 2.8% of over 9000 academic journals.

For more information, please click here

Contacts:
Yao Meng
Tsinghua University Press

Office: 86-108-347-0574

Copyright © Tsinghua University Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

2 Dimensional Materials

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project