Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy

A time lens transforms a continuous-wave, single-color laser beam into a high-performance, on-chip femtosecond pulse source.

CREDIT
(Credit: Second Bay Studios/Harvard SEAS)
A time lens transforms a continuous-wave, single-color laser beam into a high-performance, on-chip femtosecond pulse source. CREDIT (Credit: Second Bay Studios/Harvard SEAS)

Abstract:
Femtosecond pulsed lasers — which emit light in ultrafast bursts lasting a millionth of a billionth of a second — are powerful tools used in a range of applications from medicine and manufacturing, to sensing and precision measurements of space and time. Today, these lasers are typically expensive table-top systems, which limits their use in applications that have size and power consumption restrictions.

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy

Cambridge, MA | Posted on November 18th, 2022

An on-chip femtosecond pulse source would unlock new applications in quantum and optical computing, astronomy, optical communications and beyond. However, it’s been a challenge to integrate tunable and highly efficient pulsed lasers onto chips.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a high-performance, on-chip femtosecond pulse source using a tool that seems straight out of science fiction: a time lens.

The research is published in Nature.

“Pulsed lasers that produce high-intensity, short pulses consisting of many colors of light have remained large,” said Marko Lončar, the Tiantsai Lin Professor of Electrical Engineering at SEAS and senior author of the study. “To make these sources more practical, we decided to shrink a well-known approach, used to realize conventional – and large — femtosecond sources, leveraging a state of the art integrated photonics platform that we have developed. Importantly, our chips are made using microfabrication techniques like those used to make computer chips, which ensures not only reduced cost and size, but also improved performance and reliability of our femtosecond sources.”

Traditional lenses, like contact lenses or those found in magnifying glasses and microscopes, bend rays of light coming from different directions by altering their phase so that they hit the same location in space — the focal point.

Time lenses, on the other hand, “bend” light beams in similar ways – but they alter the phase of light beams in time rather than space. In this way, different colors of light, which travel at different speeds, are re-timed so that they each hit the focal plane at the same time.

Imagine a car race, in which each color of light is a different car. First, the time lens staggers the leave time of each car, then sets their speed so they arrive at the finish line at the same time.

To generate femtosecond pulses, the team’s device uses a series of optical waveguides, couplers, modulators and optical grating on the lithium niobate platform pioneered by Lončar’s lab.

The team starts by passing a continuous-wave, single-color laser beam through an amplitude modulator that controls the amount of light going through the time-lens, a function similar to an aperture in a conventional lens. The light then propagates through the “bendy” part of the lens, a phase modulator in this case, where a frequency comb of different colors is generated. Going back to the car analogy, the phase modulator creates and then releases the cars of different colors at different starting times.

Then the final component of the laser comes in — a fishbone grating along the waveguide. The grating changes the speed of the different colors of light to bring them all in line with each other, neck and neck in the race, so that they hit the finish line (or focal plane) at the same time

Because the device controls how fast different wavelengths travel and when they hit the focal plane, it effectively transforms the continuous, single color laser beam into a broadband, high-intensity pulse source that can produce ultra-fast, 520 femtosecond bursts.

The device is highly tunable, integrated onto a 2cm by 4mm chip and, because of lithium niobate’s electro-optical properties, requires significantly reduced power than table-top products.

“We’ve shown that integrated photonics offers simultaneous improvements in energy consumption and size,” said Mengjie Yu, a former postdoctoral fellow at SEAS and first author of the study. “There’s no tradeoff here; you save energy at the same time you save space. You just get better performance as the device gets smaller and more integrated. Just imagine — in the future we can carry around femtosecond pulse lasers in our pockets to sense how fresh fruit is or track our well-being in real time, or in our cars to do distance measurement.”

Yu is currently an Assistant Professor at the University of Southern California.

Next, the team aims to explore some of the applications for both the laser itself and the time lens technology, including in lensing systems like telescopes as well as in ultrafast signal processing and quantum networking.

Harvard’s Office of Technology Development has protected the intellectual property arising from the Loncar Lab’s innovations in lithium niobate systems. Loncar is a cofounder of HyperLight Corporation, a startup which was launched to commercialize integrated photonic chips based on certain innovations developed in his lab.

The research was a collaboration between Harvard, HyperLight, Columbia University and Freedom Photonics.

The paper was co-authored by David Barton, Rebecca Cheng, Christian Reimer, Prashanta Kharel, Lingyan He, Linbo Shao, Di Zhu, Yaowen Hu, Hannah R. Grant, Leif Johansson, Yoshitomo Okawachi, Alexander L. Gaeta and Mian Zhang.

It was supported by the Defense Advanced Research Projects Agency (HR0011-20-C-0137), Army Research Office (W911NF2010248), Office of Naval Research (N00014- 18-C-1043) and Air Force Office of Scientific Research (FA9550-19-1-0376 and FA9550-20-1-0297).

####

For more information, please click here

Contacts:
Leah Burrows
Harvard John A. Paulson School of Engineering and Applied Sciences

Office: 617-496-1351

Copyright © Harvard John A. Paulson School of Engineering and Applied Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project