Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum

Schematic of the BIC-based semi-nonlinear photonic waveguide and its nonlinear frequency conversion.

CREDIT
by Xueshi Li, Jiantao Ma, Shunfa Liu, Peinian Huang, Bo Chen, Dunzhao Wei, Jin Liu
Schematic of the BIC-based semi-nonlinear photonic waveguide and its nonlinear frequency conversion. CREDIT by Xueshi Li, Jiantao Ma, Shunfa Liu, Peinian Huang, Bo Chen, Dunzhao Wei, Jin Liu

Abstract:
Lithium niobite (LN) with an ultra-wide optical transparent window has shown excellent nonlinear, electro-optic, acoustic-optic, piezoelectric, thermoelectric and photorefractive effects. It is an excellent platform for realizing χ(2) nonlinear photonic devices with low power consumption and high efficiency. However, phase matching condition among the nonlinear interacting optical fields and advanced nanofabrication techniques are required to realize high-performance LN nonlinear devices. On the one hand, an etchless LN waveguide structure, based on bound states in the continuum (BIC), has been proposed to simplify the nanofabrication process. On the other hand, most of the modal phase matching (MPM) processes suffer from the significant mode profile disparities between the fundamental frequency (FF) and the second harmonic (SH) waves, resulting in a small or even vanishing nonlinear modal overlap and consequently limiting the conversion efficiency. Alternatively, quasi-phase matching can be achieved by periodic poling of LN waveguides to maximize the nonlinear modal overlap, but the poling process is technologically nontrivial.

Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum

Changchun, China | Posted on November 4th, 2022

Xueshi Li, Dunzhao Wei, Jin Liu et al. from Sun Yat-sen University have reported efficient SHG by harnessing the BIC in a highly engineerable semi-nonlinear waveguide constructed by electron-beam resist waveguide and thin-film silicon nitride (SiN) and LN, as shown in Fig.1. This device shows the following advantages: (a) Low propagation losses for FF and SH waves; (b) achievement of MPM; (c) Large nonlinear modal overlap for FF TM00 and SH TM01 mode.

Bound propagation modes of the device were guided by a patterned low-refractive-index (LRI) waveguide but confined in a high refractive SiN/LN thin films. Since TM-like modes are immersed in the high-loss continuous TE-like modes, it will encounter propagation loss due to its coupling with TE-like modes. However, by carefully designing octave-separating BICs for the nonlinear interacting TM modes in such a hybrid structure, one can largely decrease the propagation losses of both FF and SH waves. In addition, the efficient second-harmonic generation (SHG) not only requires phase matching between the FF and SH modes, but also depends on their nonlinear modal overlap integrals. In the nonlinear conversion between the FF TM00 mode at the telecom band and the SH TM01 mode at the visible band, the nonlinear overlapping integral is not zero any more due to the vanishing χ(2) of SiN, which could achieve a theoretical normalized conversion efficiency of 327% W-1cm-2.

Such devices can be fabricated by simple procedures. Firstly, a SiN layer of similar thickness is deposited on the LN thin film. Then a LRI waveguide structure is fabricated by electron-beam lithography on top of the SiN layer, as shown in Fig. 2a. the processes of etching and ferroelectric domain poling are not involved. A fiber-coupled optical system shown in Fig. 2b is used to characterize the SHG. Figure 2c shows the relationship between the SH intensity and the FF wavelength, which proves the existence of the MPM process. Fixing the FF wavelength at the phase matching point of 1570 nm, the power dependence of SH wave is measured, as shown in Fig. 2d. The on-chip normalized conversion efficiency of the device is calculated to be 4.05% W-1cm-2.

This work provides a versatile and fabrication-friendly platform to study on-chip nonlinear optical processes with high efficiency in the context of nanophotonics and quantum optics, and explore new nonlinear physical phenomena, such as non-Hermitian systems, nonlinear topologies, etc.

####

For more information, please click here

Contacts:
Media Contact

Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

Office: 86-431-861-76851
Expert Contact

Xueshi Li
Sun Yat-Sen University, China

Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanofabrication

New chip opens door to AI computing at light speed February 16th, 2024

Researchers develop technique to synthesize water-soluble alloy nanoclusters January 12th, 2024

Shrinking hydrogels enlarge nanofabrication options: Researchers from Pittsburgh and Hong Kong print intricate, 2D and 3D patterns December 29th, 2022

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project