Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum

Schematic of the BIC-based semi-nonlinear photonic waveguide and its nonlinear frequency conversion.

CREDIT
by Xueshi Li, Jiantao Ma, Shunfa Liu, Peinian Huang, Bo Chen, Dunzhao Wei, Jin Liu
Schematic of the BIC-based semi-nonlinear photonic waveguide and its nonlinear frequency conversion. CREDIT by Xueshi Li, Jiantao Ma, Shunfa Liu, Peinian Huang, Bo Chen, Dunzhao Wei, Jin Liu

Abstract:
Lithium niobite (LN) with an ultra-wide optical transparent window has shown excellent nonlinear, electro-optic, acoustic-optic, piezoelectric, thermoelectric and photorefractive effects. It is an excellent platform for realizing χ(2) nonlinear photonic devices with low power consumption and high efficiency. However, phase matching condition among the nonlinear interacting optical fields and advanced nanofabrication techniques are required to realize high-performance LN nonlinear devices. On the one hand, an etchless LN waveguide structure, based on bound states in the continuum (BIC), has been proposed to simplify the nanofabrication process. On the other hand, most of the modal phase matching (MPM) processes suffer from the significant mode profile disparities between the fundamental frequency (FF) and the second harmonic (SH) waves, resulting in a small or even vanishing nonlinear modal overlap and consequently limiting the conversion efficiency. Alternatively, quasi-phase matching can be achieved by periodic poling of LN waveguides to maximize the nonlinear modal overlap, but the poling process is technologically nontrivial.

Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum

Changchun, China | Posted on November 4th, 2022

Xueshi Li, Dunzhao Wei, Jin Liu et al. from Sun Yat-sen University have reported efficient SHG by harnessing the BIC in a highly engineerable semi-nonlinear waveguide constructed by electron-beam resist waveguide and thin-film silicon nitride (SiN) and LN, as shown in Fig.1. This device shows the following advantages: (a) Low propagation losses for FF and SH waves; (b) achievement of MPM; (c) Large nonlinear modal overlap for FF TM00 and SH TM01 mode.

Bound propagation modes of the device were guided by a patterned low-refractive-index (LRI) waveguide but confined in a high refractive SiN/LN thin films. Since TM-like modes are immersed in the high-loss continuous TE-like modes, it will encounter propagation loss due to its coupling with TE-like modes. However, by carefully designing octave-separating BICs for the nonlinear interacting TM modes in such a hybrid structure, one can largely decrease the propagation losses of both FF and SH waves. In addition, the efficient second-harmonic generation (SHG) not only requires phase matching between the FF and SH modes, but also depends on their nonlinear modal overlap integrals. In the nonlinear conversion between the FF TM00 mode at the telecom band and the SH TM01 mode at the visible band, the nonlinear overlapping integral is not zero any more due to the vanishing χ(2) of SiN, which could achieve a theoretical normalized conversion efficiency of 327% W-1cm-2.

Such devices can be fabricated by simple procedures. Firstly, a SiN layer of similar thickness is deposited on the LN thin film. Then a LRI waveguide structure is fabricated by electron-beam lithography on top of the SiN layer, as shown in Fig. 2a. the processes of etching and ferroelectric domain poling are not involved. A fiber-coupled optical system shown in Fig. 2b is used to characterize the SHG. Figure 2c shows the relationship between the SH intensity and the FF wavelength, which proves the existence of the MPM process. Fixing the FF wavelength at the phase matching point of 1570 nm, the power dependence of SH wave is measured, as shown in Fig. 2d. The on-chip normalized conversion efficiency of the device is calculated to be 4.05% W-1cm-2.

This work provides a versatile and fabrication-friendly platform to study on-chip nonlinear optical processes with high efficiency in the context of nanophotonics and quantum optics, and explore new nonlinear physical phenomena, such as non-Hermitian systems, nonlinear topologies, etc.

####

For more information, please click here

Contacts:
Media Contact

Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

Office: 86-431-861-76851
Expert Contact

Xueshi Li
Sun Yat-Sen University, China

Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Nanofabrication

Purdue researchers suggest novel way to generate a light source made from entangled photons: This research shows promise in establishing the measurement of entangled photons down to the attosecond, and possibly even zeptosecond September 9th, 2022

Mimicking termites to generate new materials August 26th, 2022

Electrically driven single microwire-based single-mode microlaser July 8th, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Govt.-Legislation/Regulation/Funding/Policy

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Chip Technology

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Spin photonics to move forward with new anapole probe November 4th, 2022

Optical computing/Photonic computing

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Spin photonics to move forward with new anapole probe November 4th, 2022

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Materials/Metamaterials

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Advances in thermoelectric power generation possible with various ‘metal chalcogenide’ materials, recent review shows November 4th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Advances in thermoelectric power generation possible with various ‘metal chalcogenide’ materials, recent review shows November 4th, 2022

Improving the efficiency of nanogenerators that harvest static electricity October 28th, 2022

Scientists design electrolyte for lithium metal anodes for use in lithium metal batteries: Potential applications in metal battery systems that provide large-scale, sustainable energy October 7th, 2022

The battery that runs 630 km on a single charge October 7th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Photonics/Optics/Lasers

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Spin photonics to move forward with new anapole probe November 4th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project