Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > “Kagome” metallic crystal adds new spin to electronics

Fig. 1. Illustration of surface electronic behaviour in a kagome metal. The gyroscope is only an analogy of “spin”, which is one of the intrinsic physical properties of fundamental particles. Note that electrons will not really rotate as shown.

CREDIT
City University of Hong Kong
Fig. 1. Illustration of surface electronic behaviour in a kagome metal. The gyroscope is only an analogy of “spin”, which is one of the intrinsic physical properties of fundamental particles. Note that electrons will not really rotate as shown. CREDIT City University of Hong Kong

Abstract:
A multinational team of researchers, co-led by a City University of Hong Kong (CityU) physicist, has found that a novel metallic crystal displays unusual electronic behaviour on its surface, thanks to the crystal’s unique atomic structure. Their findings open up the possibility of using this material to develop faster and smaller microelectronic devices.

“Kagome” metallic crystal adds new spin to electronics

Hong Kong, China | Posted on October 28th, 2022

The material that was studied is a recently discovered “kagome” metal compound that consists of three elements: gadolinium (Gd), vanadium (V), and tin (Sn). It is classed as a “1-6-6” material to indicate the ratio of the three metal elements present in the GdV6Sn6 crystal. The atoms are arranged in a complex but regular geometric pattern, resulting in extraordinary surface characteristics.

Normally, negatively charged electrons in atoms move about within discrete energy bands at different distances from the positively charged nuclei. However, on the surface of GdV6Sn6, top layers of exposed atoms are predicted to interact with each other and deform the topology, that is, shape and positioning, of the energy bands. In theory, this deformation could introduce a new and stable electronic property that, until now, has not been definitively detected in GdV6Sn6 or any other kagome metal.

First observation of unusual surface electronic behaviour in a kagome metal

“Our team unambiguously observed for the first time that a kagome metal can exhibit altered electronic energy-band structures of the type known as ‘topologically non-trivial Dirac surface states’,” says Dr Ma Junzhang, Assistant Professor in the Department of Physics at CityU. “Because of their intrinsic spin and charge, electrons create their own magnetic field and behave like tiny gyroscopes that have both rotation and an angled tilt that points in a certain direction. We demonstrated that in GdV6Sn6, the surface electrons become reordered or 'spin-polarised', and their tilts reorient themselves around a common axis that is perpendicular to the surface.”

The ordered orientation of electrons around a shared axis is their “spin chirality”, which can be in either a clockwise or an anticlockwise direction (Fig. 1). More importantly, the research team was able to successfully reverse the spin chirality by performing a simple physical modification of the crystal surface. “Because we found that the spin chirality of the spin-polarised electrons is easily reversible, our material has great potential for application in next-generation transistors in the field of spintronics,” adds Dr Ma.

The study, published in Science Advances on 21 September 2022, was motivated by theoretical predictions of novel surface electronic band structures after considering special features of GdV6Sn6 kagome crystals. For example, layers of repeating V3Sn subunits are stacked between alternating layers of Sn and GdSn2 (Fig. 2(i)). Furthermore, multiple V3Sn subunits are arranged geometrically in a “kagome layer”, whose repeating pattern of six equilateral triangles surrounding a hexagon resembles the kagome lattice seen in Japanese bamboo basket weaving (Fig. 2(ii)). Finally, the V3Sn kagome layer is non-magnetic, whereas the GdSn2 layer is magnetic.

First, the researchers made GdV6Sn6 crystals by heating Gd, V, and Sn metals and slowly cooling the product. Then, after confirming the chemical composition and structure by single-crystal X-ray diffraction, they cleaved a crystal through the stacked layers and analysed the exposed surface by angle-resolved photoemission spectroscopy, or ARPES. Results revealed that the cleaved surface indeed possessed reshaped energy band structures, and further analysis demonstrated clockwise spin character. Finally, the team showed that the surface energy bands could be warped drastically by coating the surface with potassium atoms, in a process known as electron doping. As a result, the electron spin chirality switched from clockwise to anticlockwise with increasing doping level (Fig. 3).

Potential applications in improving information transfer and beyond

The ability of researchers to deliberately reverse the spin chirality of surface electrons on the GdV6Sn6 crystal makes it a promising candidate material for numerous practical electronic applications.

“In the future, we might be able to apply a local voltage, or electrostatic 'gate', to directly manipulate or tune the electronic band structure and hence alternate the electron spin chirality on the surface of 1-6-6 kagome metals,” says Dr Ma. “Controlling the direction of spin-polarisation of electrons is an attractive alternative to traditional binary digital coding based on the presence or absence of electrical charge, which is relatively slow and can lead to problems such as device heating. Our technology could significantly increase efficiency in digital information transfer, with less heat generation, and could ultimately be exploited in quantum computing when coupled with superconductors.”

The first authors of the study are Dr Hu Yong from the Paul Scherrer Institute (PSI), Switzerland, and Dr Wu Xianxin from the Chinese Academy of Science, Beijing. The corresponding authors are Dr Hu, Dr Ma from CityU, and Professor Shi Ming from the PSI. Collaborators included Professor Xie Weiwei from Rutgers University, US, who provided the samples and Professor Andreas Schnyder from the Max Planck Institute, Germany.

In this work, Dr Ma was funded by CityU, the National Natural Science Foundation of China, and Guangdong Basic and Applied Basic Research Foundation. The other collaborators were supported by the Swiss National Science Foundation, Sino-Swiss Science and Technology Cooperation, National Natural Science Foundation of China, and US Department of Energy Basic Energy Sciences Program.

Source: Hu, Y., Wu, X., Yang, Y. Gao, S., Plumb, N.C., Schnyder, A.P., Xie, W., Ma, J., Shi, M. Tunable topological Dirac surface states and van Hove singularities in kagome metal GdV6Sn6. Science Advances 8 (38), eadd2024 (2022).

####

For more information, please click here

Contacts:
P.K. Lee
City University of Hong Kong

Office: 852-344-28925

Copyright © City University of Hong Kong

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Possible Futures

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Graphene grows – and we can see it March 24th, 2023

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Spintronics

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Spin photonics to move forward with new anapole probe November 4th, 2022

Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022

Liquid crystal templated chiral nanomaterials October 14th, 2022

Chip Technology

Graphene grows – and we can see it March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Discoveries

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Graphene grows – and we can see it March 24th, 2023

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Announcements

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Stanford researchers develop a new way to identify bacteria in fluids: An innovative adaptation of the technology in an old inkjet printer plus AI-assisted imaging leads to a faster, cheaper way to spot bacteria in blood, wastewater, and more March 3rd, 2023

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Research partnerships

Destroying the superconductivity in a kagome metal: Electronic control of quantum transitions in candidate material for future low-energy electronics March 3rd, 2023

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project