Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio

Ultrahigh sensitivity and precision electron holography measurements around a platinum nanoparticle like the one shown here have allowed scientists to count the net charge in a single catalyst nanoparticle with a precision of just one electron for the first time.

CREDIT
Murakami Lab, Kyushu University
Ultrahigh sensitivity and precision electron holography measurements around a platinum nanoparticle like the one shown here have allowed scientists to count the net charge in a single catalyst nanoparticle with a precision of just one electron for the first time. CREDIT Murakami Lab, Kyushu University

Abstract:
If you often find yourself off by one when counting your socks after doing the laundry, you might want to sit down for this.

Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio

Fukuoka, Japan | Posted on October 14th, 2022

Scientists in Japan have now counted the number of extra—or missing—charges down to a precision of just one electron in single platinum nanoparticles having diameters only one-tenth those of common viruses.

This new process for precisely studying differences in net charge on metal nanoparticles will aid in the further understanding and development of catalysts for breaking down greenhouse and other harmful gases into fuels and benign gases or for efficiently producing ammonia needed for fertilizers used in agriculture.

Led by Kyushu University and Hitachi Ltd., the research team achieved this feat of extreme counting through hardware and software improvements that increased tenfold the sensitivity of a technique called electron holography.

While transmission electron microscopy uses a beam of electrons to observe materials down to the atomic level, electron holography utilizes the wave-like properties of electrons to probe electric and magnetic fields.

Interaction of an electron with fields causes a phase shift in its wave that can be identified by comparing it with a reference wave of an unaffected electron.

In the new work, the researchers focused their microscopes on single nanoparticles of platinum on a surface of titanium oxide, a combination of materials that is already known to act as a catalyst and speed up chemical reactions.

On average, the platinum nanoparticles had diameters of only 10 nm—so small that it would take nearly 100,000 to span one millimeter.

“While each particle contains a few tens of thousands of atoms of platinum, the addition or removal of just one or two negatively charged electrons causes significant changes in the behavior of the materials as catalysts,” says Ryotaro Aso, associate professor at Kyushu University’s Faculty of Engineering and first author on the paper in the journal Science reporting the work.

Measuring the fields just around a platinum nanoparticle—which vary depending on the imbalance of positive and negative charges in the particle—in an environment free of air, the researchers could determine the number of extra or missing electrons that are creating the fields.

“Amongst the millions of positively charged protons and negatively charged electrons balancing each other out in the nanoparticle, we could successfully tell if the number of protons and electrons was different by just one,” explains Aso.

Although the fields are too weak to observe with previous methods, the researchers improved sensitivity by using a state-of-the-art 1.2-MV atomic-resolution holography microscope developed and operated by Hitachi that reduces mechanical and electrical noise and then processing the data to further tease out the signal from the noise.

Developed by Osaka University’s Yoshihiro Midoh, one of the paper’s co-authors, the signal processing technique utilized the so-called wavelet hidden Markov model (WHMM) to reduce the noise without also removing the extremely weak signals of interest.

In addition to identifying the charge state of individual nanoparticles, the researchers were able to relate differences in the number of electrons, which ranged from one to six, to differences in the crystal structure of the nanoparticles.

While the number of electrons per area has been previously reported by averaging over a large-area measurement of many particles, this is the first time scientists could measure a single electron difference in a single particle.

“By combining breakthroughs in microscopy hardware and signal processing, we are able to study phenomenon on increasingly smaller levels,” comments Yasukazu Murakami, professor at Kyushu University’s Faculty of Engineering and supervisor of the Kyushu U team.

“In this first demonstration, we measured the charge on a single nanoparticle in vacuum. In the future, we hope to overcome the challenges that currently prevent us from doing the same measurements in the presence of gas to get information in environments closer to actually applications.”

####

About Kyushu University
Kyushu University is one of Japan’s leading research-oriented institutes of higher education since its founding in 1911. Home to around 19,000 students and 8,000 faculty and staff, Kyushu U's world-class research centers cover a wide range of study areas and research fields, from the humanities and arts to engineering and medical sciences. Its multiple campuses—including the largest in Japan—are located around Fukuoka City, a coastal metropolis on the southwestern Japanese island of Kyushu that is frequently ranked among the world’s most livable cities and historically known as a gateway to Asia.

About Hitachi, Ltd.

Hitachi drives Social Innovation Business, creating a sustainable society with data and technology. We will solve customers’ and society’s challenges with Lumada solutions leveraging IT, OT (Operational Technology) and products, under the business structure of Digital Systems & Services, Green Energy & Mobility, Connective Industries and Automotive Systems. Driven by green, digital, and innovation, we aim for growth through collaboration with our customers. The company’s consolidated revenues for fiscal year 2021 (ended March 31, 2022) totaled 10,264.6 billion yen ($84,136 million USD), with 853 consolidated subsidiaries and approximately 370,000 employees worldwide. For more information on Hitachi, please visit the company’s website at https://www.hitachi.com .

For more information, please click here

Contacts:
William J. Potscavage Jr.
Kyushu University

Office: +81-92-802-2138

Copyright © Kyushu University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information about this research, see “Direct identification of the charge state in a single platinum nanoparticle on titanium oxide,” Ryotaro Aso, Hajime Hojo, Yoshio Takahashi, Tetsuya Akashi, Yoshihiro Midoh, Fumiaki Ichihashi, Hiroshi Nakajima, Takehiro Tamaoka, Kunio Yubuta, Hiroshi Nakanishi, Hisahiro Einaga, Toshiaki Tanigaki, Hiroyuki Shinada, and Yasukazu Murakami, Science (2022).:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Chemistry

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Automotive/Transportation

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project