Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Arizona State and Zhejiang Universities reach qubit computing breakthrough: Long-Lived Coherent Quantum States in a Superconducting Device for Quantum Information Technology

a. Experimental SC circuit of device I with qubits and couplers in a square geometry. The light-grey dashed rectangles represent dimers that constitute the chain with intracoupling Ja, intercoupling Je and small cross-coupling Jx. b. Schematic (upper left) of the dynamics of the collective dimer states |Π〉 and |Π′〉. Numerics of the ratio Δ/Γ as a function of system size L for different ratios of Ja/Je, with Jx/2π in the range of [0.3, 1.2] MHz (lower left). Four-dimensional hypercube in the Hilbert space (right). c. Quantum state tomography for the four-qubit fidelity FA(t) and entanglement entropy SA(t) in a 30-qubit chain for thermalizing initial states, namely, |0101…0110〉 (i) and |01001…100110110〉 (ii), and the QMBS state Π′ (green). The couplings are Ja/2π = 1.5Je/2π ≃ −9 MHz. The inset shows the Fourier transform of the four-qubit fidelity with the peak at ω1/2π ≈ 21 MHz. The dashed grey line in the bottom panel represents the maximal thermal entropy for the subsystem, approaching to 4ln(2). d. Same data as c, but for different couplings, namely, Ja/2π = 2.5Je/2π ≃ −10 MHz from device II and ω′1/2π ≈ 22 MHz. Schematics in c and d illustrate the bipartition of the system.

CREDIT
Arizona State University, Zhejiang University
a. Experimental SC circuit of device I with qubits and couplers in a square geometry. The light-grey dashed rectangles represent dimers that constitute the chain with intracoupling Ja, intercoupling Je and small cross-coupling Jx. b. Schematic (upper left) of the dynamics of the collective dimer states |Π〉 and |Π′〉. Numerics of the ratio Δ/Γ as a function of system size L for different ratios of Ja/Je, with Jx/2π in the range of [0.3, 1.2] MHz (lower left). Four-dimensional hypercube in the Hilbert space (right). c. Quantum state tomography for the four-qubit fidelity FA(t) and entanglement entropy SA(t) in a 30-qubit chain for thermalizing initial states, namely, |0101…0110〉 (i) and |01001…100110110〉 (ii), and the QMBS state Π′ (green). The couplings are Ja/2π = 1.5Je/2π ≃ −9 MHz. The inset shows the Fourier transform of the four-qubit fidelity with the peak at ω1/2π ≈ 21 MHz. The dashed grey line in the bottom panel represents the maximal thermal entropy for the subsystem, approaching to 4ln(2). d. Same data as c, but for different couplings, namely, Ja/2π = 2.5Je/2π ≃ −10 MHz from device II and ω′1/2π ≈ 22 MHz. Schematics in c and d illustrate the bipartition of the system. CREDIT Arizona State University, Zhejiang University

Abstract:
Researchers from Arizona State University and Zhejiang University in China, along with two theorists from the United Kingdom, have been able to demonstrate for the first time that large numbers of quantum bits, or qubits, can be tuned to interact with each other while maintaining coherence for an unprecedentedly long time, in a programmable, solid state superconducting processor.

Arizona State and Zhejiang Universities reach qubit computing breakthrough: Long-Lived Coherent Quantum States in a Superconducting Device for Quantum Information Technology

Tempe, AZ | Posted on October 14th, 2022

Previously, this was only possible in Rydberg atom systems.

In a paper to be published on Thursday, Oct. 13 in Nature Physics, ASU Regents Professor Ying-Cheng Lai, his former ASU doctoral student Lei Ying and experimentalist Haohua Wang, both professors at Zhejiang University in China, have demonstrated a “first look” at the emergence of quantum many-body scarring (QMBS) states as a robust mechanism for maintaining coherence among interacting qubits. Such exotic quantum states offer the appealing possibility of realizing extensive multipartite entanglement for a variety of applications in quantum information science and technology to achieve high processing speed and low power consumption.

“QMBS states possess the intrinsic and generic capability of multipartite entanglement, making them extremely appealing to applications such as quantum sensing and metrology,” explained Ying.

Classical, or binary computing relies on transistors – which can represent only the “1” or the “0” at a single time. In quantum computing, qubits can represent both 0 and 1 simultaneously, which can exponentially accelerate computing processes.

“In quantum information science and technology, it is often necessary to assemble a large number of fundamental information-processing units – qubits – together,” explained Lai. “For applications such as quantum computing, maintaining a high degree of coherence or quantum entanglement among the qubits is essential.

“However, the inevitable interactions among the qubits and environmental noise can ruin the coherence in a very short time -- within about ten nanoseconds. This is because many interacting qubits constitute a many-body system,” said Lai.

Key to the research is insight about delaying thermalization to maintain coherence, considered a critical research goal in quantum computing.

“From basic physics, we know that in a system of many interacting particles, for example, molecules in a closed volume, the process of thermalization will arise. The scrambling among many qubits will invariably result in quantum thermalization – the process described by the so-called Eigenstate Thermalization Hypothesis, which will destroy the coherence among the qubits,” said Lai.

According to Lai, the findings moving quantum computing forward will have applications in cryptology, secure communications and cybersecurity, among other technologies.

Collaborators from the School of Physics and Astronomy, University of Leeds, Leeds, UK, include Jean-Yves Desaules and Zlatko Papić.

Dr. Hekang Li fabricated the device at Zhejiang University. Other collaborators from Zhejiang University, Hangzhou, China, include Pengfei Zhang, Hang Dong, Jiachen Chen, Jinfeng Deng, Bobo Liu, Wenhui Ren, Yunyan Yao, Xu Zhang, Shibo Xu, Ke Wang, Feitong Jin, Xuhao Zhu, and Chao Song.

Additional contributors include Liangtian Zhao and Jie Hao from the Institute of Automation, Chinese Academy of Sciences, Beijing, China and Fangli Liu from QuEra Computing, Boston, MA

####

For more information, please click here

Contacts:
Theresa Grant
Arizona State University

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Quantum communication

“Twisty” photons could turbocharge next-gen quantum communication: Team’s on-chip technology uses orbital angular momentum to encode more information into a single photon September 23rd, 2022

Quantum network nodes with warm atoms June 24th, 2022

Photonic integrated erbium doped amplifiers reach commercial performance: Boosting light power revolutionizes communications and autopilots June 17th, 2022

New hardware integrates mechanical devices into quantum tech April 22nd, 2022

Govt.-Legislation/Regulation/Funding/Policy

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Chip Technology

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022

Quantum Computing

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Research partnerships

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

New hybrid structures could pave the way to more stable quantum computers: Study shows that merging a topological insulator with a monolayer superconductor could support theorized topological superconductivity October 28th, 2022

“Kagome” metallic crystal adds new spin to electronics October 28th, 2022

New measurements quantifying qudits provide glimpse of quantum future October 14th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project