Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory

Graphic (Silberhorn et al. 2022): On the left of the image (green triangle) is a quantum light source that is pumped until it generates two entangled photons. A photon is then measured (yellow square), generating an electronic signal. The other photon goes into memory: The heart of the experiment can be seen on the right of the image: an all-optical polarization quantum memory (right square) that can be dynamically programmed by a forward signal (through the black cable). This means: If a photon is detected, the "partner photon" is stored until the next pair is generated. This switches the operating mode of the programmable memory and activates the interference between the newly generated and the stored photon.
Graphic (Silberhorn et al. 2022): On the left of the image (green triangle) is a quantum light source that is pumped until it generates two entangled photons. A photon is then measured (yellow square), generating an electronic signal. The other photon goes into memory: The heart of the experiment can be seen on the right of the image: an all-optical polarization quantum memory (right square) that can be dynamically programmed by a forward signal (through the black cable). This means: If a photon is detected, the "partner photon" is stored until the next pair is generated. This switches the operating mode of the programmable memory and activates the interference between the newly generated and the stored photon.

Abstract:
Tiny particles that are interconnected despite sometimes being thousands of kilometres apart – Albert Einstein called this ‘spooky action at a distance’. Something that would be inexplicable by the laws of classical physics is a fundamental part of quantum physics. Entanglement like this can occur between multiple quantum particles, meaning that certain properties of the particles are intimately linked with each other. Entangled systems containing multiple quantum particles offer significant benefits in implementing quantum algorithms, which have the potential to be used in communications, data security or quantum computing. Researchers from Paderborn University have been working with colleagues from Ulm University to develop the first programmable optical quantum memory. The study was published as an 'editor’s suggestion’ in the Physical Review Letters journal.

Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory

Paderborn, Germany | Posted on October 7th, 2022

Entangled light particles

The ‘Integrated Quantum Optics’ group ledby Prof. Christine Silberhorn from the Department of Physics and Institute for Photonic Quantum Systems (PhoQS) at Paderborn University is using minuscule light particles, or photons, as quantum systems. The researchers are seeking to entangle as many as possible in large states. Working together with researchers from the Institute of Theoretical Physics at Ulm University, they have now presented a new approach.

Previously, attempts to entangle more than two particles only resulted in very inefficient entanglement generation. If researchers wanted to link two particles with others, in some cases this involved a long wait, as the interconnections that promote(?) this entanglement only operate with limited probability rather than at the touch of a button. This meant that the photons were no longer a part of the experiment once the next suitable particle arrived – as storing qubit states represents a major experimental challenge.

Gradually achieving greater entanglement

‘We have now developed a programmable, optical, buffer quantum memory that can switch dynamically back and forth between different modes – storage mode, interference mode and the final release’, Silberhorn explains. In the experimental setup, a small quantum state can be stored until another state is generated, and then the two can be entangled. This enables a large, entangled quantum state to ‘grow’ particle by particle. Silberhorn’s team has already used this method to entangle six particles, making it much more efficient than any previous experiments. By comparison, the largest ever entanglement of photon pairs, performed by Chinese researchers, consisted of twelve individual particles. However, creating this state took significantly more time, by orders of magnitude.

The quantum physicist explains: ‘Our system allows entangled states of increasing size to be gradually built up – which is much more reliable, faster, and more efficient than any previous method. For us, this represents a milestone that puts us in striking distance of practical applications of large, entangled states for useful quantum technologies.’ The new approach can be combined with all common photon-pair sources, meaning that other scientists will also be able to use the method.

####

For more information, please click here

Contacts:
Media Contact

Nina Reckendorf
Universität Paderborn

Office: 49-525-160-3981
Expert Contact

Prof. Christine Silberhorn
Paderborn University

Copyright © Universität Paderborn

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Quantum Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project