Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators

Schematics of the layer Hall effect (a) and layer-locked hidden Berry curvature (b) in a two-layer antiferromagnetic insulator. In the layer Hall effect, electrons are spontaneously deflected to opposite sides at different layers (the red and blue arrowed curves) due to the layer-locked hidden Berry curvature. (c)-(d) When a perpendicular electric field (the cyan arrow) is applied, the system shows layer-locked anomalous Hall effects tunable by the electric-field direction. The yellow arrows specify the antiferromagnetic configurations. The green arrows denote the in-plane electric field Ey for the Hall measurement.
CREDIT
©Science China Press
Schematics of the layer Hall effect (a) and layer-locked hidden Berry curvature (b) in a two-layer antiferromagnetic insulator. In the layer Hall effect, electrons are spontaneously deflected to opposite sides at different layers (the red and blue arrowed curves) due to the layer-locked hidden Berry curvature. (c)-(d) When a perpendicular electric field (the cyan arrow) is applied, the system shows layer-locked anomalous Hall effects tunable by the electric-field direction. The yellow arrows specify the antiferromagnetic configurations. The green arrows denote the in-plane electric field Ey for the Hall measurement. CREDIT ©Science China Press

Abstract:
This study is led by Prof. Hai-Zhou Lu and Prof. Qihang Liu (Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology).

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators

Beijing, China | Posted on September 30th, 2022

Every time a new Hall effect is discovered, a wave of research will be inspired. The first experiment on a new type of Hall effect, the layer Hall effect, had been reported by Xu’s group at Harvard University. In the layer Hall effect, electrons from the top and bottom layers are deflected to opposite directions and was measured by applying an out-of-plane electric field to break the PT symmetry [see Figures (c) and (d) below], where P and T represent inversion symmetry and time-reversal symmetry, respectively. The authors proposed a universal picture in terms of hidden Berry curvature for the layer Hall effect [Figure (b)]. They show that the existence of the layer Hall effect is irrelevant to the electric field [Figure (a)], which is similar to the valley/spin Hall effect. Therefore, they also proposed an alternative approach, i.e., the nonlocal measurement, to identify the layer Hall effect, without applying the electric field.

On the other hand, the authors revealed three distinct features to enhance the layer Hall effect in PT-symmetric antiferromagnetic insulators. Moreover, the authors proposed more material candidates for the layer Hall effect, which will inspire more experimental explorations. Also, the hidden physics can be generalized to many degrees of freedom, including spin, orbital, and circular polarizations in the future.

####

For more information, please click here

Contacts:
Media Contact

Bei Yan
Science China Press


Expert Contact

Hai-Zhou Lu
Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech)

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

Physics

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Diamond cut precision: University of Illinois to develop diamond sensors for neutron experiment and quantum information science April 14th, 2023

Scientists reveal the effect of Cu(I) structure on quantum sieving for hydrogen isotope separation February 10th, 2023

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Possible Futures

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Single quantum bit achieves complex systems modeling June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Discoveries

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Announcements

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Single quantum bit achieves complex systems modeling June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project