Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > “Twisty” photons could turbocharge next-gen quantum communication: Team’s on-chip technology uses orbital angular momentum to encode more information into a single photon

The image shows a quantum emitter capable of emitting single photons integrated with a geared-shaped resonator. By fine-tuning the arrangement of the emitter and the gear-shaped resonator, it’s possible to leverage the interaction between the photon’s spin and its orbital angular momentum to create individual “twisty” photons on demand.
CREDIT
Stevens Institute of Technology
The image shows a quantum emitter capable of emitting single photons integrated with a geared-shaped resonator. By fine-tuning the arrangement of the emitter and the gear-shaped resonator, it’s possible to leverage the interaction between the photon’s spin and its orbital angular momentum to create individual “twisty” photons on demand. CREDIT Stevens Institute of Technology

Abstract:
Quantum computers and communication devices work by encoding information into individual or entangled photons, enabling data to be quantum securely transmitted and manipulated exponentially faster than is possible with conventional electronics. Now, quantum researchers at Stevens Institute of Technology have demonstrated a method for encoding vastly more information into a single photon, opening the door to even faster and more powerful quantum communication tools.

“Twisty” photons could turbocharge next-gen quantum communication: Team’s on-chip technology uses orbital angular momentum to encode more information into a single photon

Hoboken, NJ | Posted on September 23rd, 2022

Typically, quantum communication systems “write” information onto a photon’s spin angular momentum. In this case, photons carry out either a right or left circular rotation, or form a quantum superposition of the two known as a two-dimensional qubit. It’s also possible to encode information onto a photon’s orbital angular momentum — the corkscrew path that light follows as it twists and torques forward, with each photon circling around the center of the beam. When the spin and angular momentum interlock, it forms a high-dimensional qudit -- enabling any of a theoretically infinite range of values to be encoded into and propagated by a single photon.

Qubits and qudits, also known as flying qubits and flying qudits, are used to propagate information stored in photons from one point to another. The main difference is that qudits can carry much more information over the same distance than qubits, providing the foundation for turbocharging next generation quantum communication.

In a cover story in the August 2022 issue of Optica, researchers led by Stefan Strauf, head of the NanoPhotonics Lab at Stevens, show that they can create and control individual flying qudits, or “twisty” photons, on demand — a breakthrough that could dramatically expand the capabilities of quantum communication tools. The work builds upon the team’s 2018 paper in Nature Nanotechnology.

“Normally the spin angular momentum and the orbital angular momentum are independent properties of a photon. Our device is the first to demonstrate simultaneous control of both properties via the controlled coupling between the two,” explained Yichen Ma, a graduate student in Strauf’s NanoPhotonics Lab, who led the research in collaboration with Liang Feng at the University of Pennsylvania, and Jim Hone at Columbia University.

“What makes it a big deal is that we’ve shown we can do this with single photons rather than classical light beams, which is the basic requirement for any kind of quantum communication application,” Ma said.

Encoding information into orbital angular momentum radically increases the information that can be transmitted, Ma explained. Leveraging “twisty” photons could boost the bandwidth of quantum communication tools, enabling them to transmit data far more quickly.

To create twisty photons, Strauf’s team used an atom-thick film of tungsten diselenide, an upcoming novel semiconductor material, to create a quantum emitter capable of emitting single photons.

Next, they coupled the quantum emitter in an internally reflective donut-shaped space called a ring resonator. By fine-tuning the arrangement of the emitter and the gear-shaped resonator, it’s possible to leverage the interaction between the photon’s spin and its orbital angular momentum to create individual “twisty” photons on demand. The key to enabling this spin-momentum-locking functionality relies in the gear-shaped patterning of the ring resonator, that when carefully engineered in the design, creates the twisty vortex beam of light that the device shoots out at the speed of light.

By integrating those capabilities into a single microchip measuring just 20 microns across — about a quarter of the width of a human hair — the team has created a twisty-photon emitter capable of interacting with other standardized components as part of a quantum communications system.

Some key challenges remain. While the team’s technology can control the direction in which a photon spirals — clockwise or anticlockwise — more work is needed to control the exact orbital angular momentum mode number. That’s the critical capability that will enable a theoretically infinite range of different values to be “written” into and later extracted from a single photon. Latest experiments in Strauf’s Nanophotonics Lab show promising results that this problem can be soon overcome, according to Ma.

Further work is also needed to create a device that can create twisted photons with rigorously consistent quantum properties, i.e., indistinguishable photons — a key requirement to enable the quantum internet. Such challenges affect everyone working in quantum photonics and could require new breakthroughs in material science to solve, Ma said.

“Plenty of challenges lie ahead,” he added. “But we’ve shown the potential for creating quantum light sources that are more versatile than anything that was previously possible.”

####

For more information, please click here

Contacts:
Thania Benios
Stevens Institute of Technology

Office: 917-930-5988

Copyright © Stevens Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Quantum communication

Next-generation quantum communication October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project