Home > Press > Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals
![]() |
| image: The organic layer grown on cuprous oxide nanocube improved CO2 reduction selectivity of Cu species wrapped by it, and also maintained its cubic structure during catalysis. Credit: Shoko Kume, Hiroshima University |
Abstract:
As the need to mitigate climate change accelerates, scientists are trying to find new ways to reduce carbon dioxide emissions. One process, called electrochemical reduction or electrolysis, uses electricity and a catalyst to convert carbon dioxide into organic products that can be used in other ways. Unlike conversion between water and hydrogen, chemical recycling of carbon dioxide can produce various useable products because carbon can develop vast varieties of organic structures.
One way to achieve electrochemical reduction of carbon dioxide uses very tiny pieces of copper. While bulk copper metal has known to convert carbon dioxide into various organic molecules, these small pieces of copper can further improve catalytic activity not only by the increase of its surface area but also by the unique electronic structure of copper emerged from nanosizing.
In a paper published in Chemical Communications on June 23, researchers explain a process for improving the way the copper nanocubes convert carbon dioxide, by improving their selectivity. Selectivity refers to the ability of a catalyst to produce a desired product over unwanted byproducts.
“Recent developments in carbon dioxide reduction using copper electrocatalysts can convert the gas into hydrocarbons and alcohol, but the selectivity of various copper-related electrocatalysts developed so far is still elusive, because they tend to lose activity through structural reorganization during the catalysis,” said Shoko Kume, associate professor at the Graduate School of Advanced Science and Engineering at Hiroshima University in Japan.
Researchers discovered that this problem can be solved by growing an organic layer on top of the nanocubes. First, a pair of monomers were added to the copper oxide nanocube. These monomers were tethered by the chemistry on copper oxide and an even organic layer grew on the surface of the cubes. This new organic layer helps improve carbon dioxide reduction selectivity, in part because carbon dioxide has poor solubility and the organic layer the researchers produced has hydrophobic properties, meaning it repels excessive water, from which unwanted hydrogen is produced. “The wrapping improved carbon dioxide reduction of the copper beneath this organic layer by suppressing hydrogen evolution, and also maintained the cubic structure throughout the catalyst operation,” said Kume.
Another important factor for improving the quality of the organic layer was the temperature at the time of the growth, with the best results found at room temperature. Under the best conditions, the layer is flat with a thickness of several molecules. Even the thin layer readily permeates carbon dioxide and allows the wrapped copper to undergo electroreduction, protecting the metals and helping the cubes retain their shape.
Currently, copper nanocubes are not widely adopted as a method for carbon dioxide reduction because they are unstable and do not have the level of selectivity needed to effectively recycle the carbon dioxide into other chemical products. The findings of this paper highlight a new method of creating an electrocatalyst using copper nanocubes that can solve some of these problems. Researchers also point out, looking ahead, that the method can be modified to control both the selectivity and improve how the catalysts work.
“Our current method can introduce a vast variety of organic structures within the layer, which can be involved in the carbon dioxide reduction process to control its selectivity and efficiency,” said Kume. “It can also be used to control the dynamic behavior of metal species during catalysis, which can develop catalysts with long life and a tolerance for impurities.”
###
Other contributors include Takuma Umeda, Takeshi Kurome, Ayumu Sakamoto, Kazuyuki Kubo, and Tsutomu Mizuta of the Department of Chemistry at the Graduate School of Advanced Science and Engineering at Hiroshima University and Seung Uk Son of the Department of Chemistry at Sungkyunkwan University.
The Japan Society for Promotion of Science supported this research.
####
About Hiroshima University
Since its foundation in 1949, Hiroshima University has striven to become one of the most prominent and comprehensive universities in Japan for the promotion and development of scholarship and education. Consisting of 12 schools for undergraduate level and 4 graduate schools, ranging from natural sciences to humanities and social sciences, the university has grown into one of the most distinguished comprehensive research universities in Japan.
For more information, please click here
Contacts:
Norifumi Miyokawa
Hiroshima University
Office: 082-424-4427
Copyright © Hiroshima University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
Journal: Chemical Communications
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Chemistry
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||