Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Engineers fabricate a chip-free, wireless electronic “skin”: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries

MIT engineers fabricated a chip-free, wireless electronic “skin.” The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries.
CREDIT
Courtesy of the researchers
MIT engineers fabricated a chip-free, wireless electronic “skin.” The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries. CREDIT Courtesy of the researchers

Abstract:
Wearable sensors are ubiquitous thanks to wireless technology that enables a person’s glucose concentrations, blood pressure, heart rate, and activity levels to be transmitted seamlessly from sensor to smartphone for further analysis.

Engineers fabricate a chip-free, wireless electronic “skin”: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries

Cambridge, MA | Posted on August 19th, 2022

Most wireless sensors today communicate via embedded Bluetooth chips that are themselves powered by small batteries. But these conventional chips and power sources will likely be too bulky for next-generation sensors, which are taking on smaller, thinner, more flexible forms.

Now MIT engineers have devised a new kind of wearable sensor that communicates wirelessly without requiring onboard chips or batteries. Their design, detailed today in the journal Science, opens a path toward chip-free wireless sensors.

The team’s sensor design is a form of electronic skin, or “e-skin” — a flexible, semiconducting film that conforms to the skin like electronic Scotch tape. The heart of the sensor is an ultrathin, high-quality film of gallium nitride, a material that is known for its piezoelectric properties, meaning that it can both produce an electrical signal in response to mechanical strain and mechanically vibrate in response to an electrical impulse.

The researchers found they could harness gallium nitride’s two-way piezoelectric properties and use the material simultaneously for both sensing and wireless communication.

In their new study, the team produced pure, single-crystalline samples of gallium nitride, which they paired with a conducting layer of gold to boost any incoming or outgoing electrical signal. They showed that the device was sensitive enough to vibrate in response to a person’s heartbeat, as well as the salt in their sweat, and that the material’s vibrations generated an electrical signal that could be read by a nearby receiver. In this way, the device was able to wirelessly transmit sensing information, without the need for a chip or battery.

“Chips require a lot of power, but our device could make a system very light without having any chips that are power-hungry,” says the study’s corresponding author, Jeehwan Kim, an associate professor of mechanical engineering and of materials science and engineering, and a principal investigator in the Research Laboratory of Electronics.

“You could put it on your body like a bandage, and paired with a wireless reader on your cellphone, you could wirelessly monitor your pulse, sweat, and other biological signals.”

Kim’s co-authors include first author and former MIT postdoc Yeongin Kim, who is now an assistant professor at the University of Cincinnati; co-corresponding author Jiyeon Han of the Korean cosmetics company AMOREPACIFIC, which helped motivate the current work; members of the Kim Research Group at MIT; and other collaborators at the University of Virginia, Washington University in St. Louis, and multiple institutions across South Korea.

Pure resonance

Jeehwan Kim’s group previously developed a technique, called remote epitaxy, that they have employed to quickly grow and peel away ultrathin, high-quality semiconductors from wafers coated with graphene. Using this technique, they have fabricated and explored various flexible, multifunctional electronic films.

In their new study, the engineers used the same technique to peel away ultrathin single-crystalline films of gallium nitride, which in its pure, defect-free form is a highly sensitive piezoelectric material.

The team looked to use a pure film of gallium nitride as both a sensor and a wireless communicator of surface acoustic waves, which are essentially vibrations across the films. The patterns of these waves can indicate a person’s heart rate, or even more subtly, the presence of certain compounds on the skin, such as salt in sweat.

The researchers hypothesized that a gallium nitride-based sensor, adhered to the skin, would have its own inherent, “resonant” vibration or frequency that the piezoelectric material would simultaneously convert into an electrical signal, the frequency of which a wireless receiver could register. Any change to the skin’s conditions, such as from an accelerated heart rate, would affect the sensor’s mechanical vibrations, and the electrical signal that it automatically transmits to the recever.

“If there is any change in the pulse, or chemicals in sweat, or even ultraviolet exposure to skin, all of this activity can change the pattern of surface acoustic waves on the gallium nitride film,” notes Yeongin Kim. “And the sensitivity of our film is so high that it can detect these changes.”

Wave transmission

To test their idea, the researchers produced a thin film of pure, high-quality gallium nitride and paired it with a layer of gold to boost the electrical signal. They deposited the gold in the pattern of repeating dumbbells — a lattice-like configuration that imparted some flexibility to the normally rigid metal. The gallium nitride and gold, which they consider to be a sample of electronic skin, measures just 250 nanometers thick — about 100 times thinner than the width of a human hair.

They placed the new e-skin on volunteers’ wrists and necks, and used a simple antenna, held nearby, to wirelessly register the device’s frequency without physically contacting the sensor itself. The device was able to sense and wirelessly transmit changes in the surface acoustic waves of the gallium nitride on volunteers’ skin related to their heart rate.

The team also paired the device with a thin ion-sensing membrane — a material that selectively attracts a target ion, and in this case, sodium. With this enhancement, the device could sense and wireless transmit changing sodium levels as a volunteer held onto a heat pad and began to sweat.

The researchers see their results as a first step toward chip-free wireless sensors, and they envision that the current device could be paired with other selective membranes to monitor other vital biomarkers.

“We showed sodium sensing, but if you change the sensing membrane, you could detect any target biomarker, such as glucose, or cortisol related to stress levels,” says co-author and MIT postdoc Jun Min Suh. “It’s quite a versatile platform.”

###

This research was supported by AMOREPACIFIC.

####

For more information, please click here

Contacts:
Sarah McDonnell
Massachusetts Institute of Technology

Office: 617-253-8923
Cell: 617-460-9583

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Drawing data in nanometer scale September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Wearable electronics

New chip ramps up AI computing efficiency August 19th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

‘Fruitcake’ structure observed in organic polymers June 3rd, 2022

Graphene crystals grow better under copper cover April 1st, 2022

Possible Futures

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Chip Technology

Conformal optical black hole for cavity September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Nanomedicine

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Georgia State researchers discover novel way to treat IBD with lipid nanoparticles August 26th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors – Signal transduction probably occurs after receptor enrichment August 19th, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Sensors

Silicon image sensor that computes: Device speeds up, simplifies image processing for autonomous vehicles and other applications August 26th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

‘Life-like’ lasers can self-organise, adapt their structure, and cooperate July 15th, 2022

CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022

Discoveries

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Announcements

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Nanobiotechnology

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Georgia State researchers discover novel way to treat IBD with lipid nanoparticles August 26th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors – Signal transduction probably occurs after receptor enrichment August 19th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project