Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces.

Diagram of an experimental setup at SLAC’s high-power laser lab where scientists used circularly polarized laser light to probe a topological insulator – a type of quantum material that conducts electric current on its surfaces but not through its interior. A process called high harmonic generation shifts the laser light to higher energies and frequencies, or harmonics, as it passes through a TI. The harmonics allow scientists to clearly distinguish what electrons are doing in the material’s conductive surface and its insulating interior.
CREDIT
Shambhu Ghimire/Stanford PULSE Institute
Diagram of an experimental setup at SLAC’s high-power laser lab where scientists used circularly polarized laser light to probe a topological insulator – a type of quantum material that conducts electric current on its surfaces but not through its interior. A process called high harmonic generation shifts the laser light to higher energies and frequencies, or harmonics, as it passes through a TI. The harmonics allow scientists to clearly distinguish what electrons are doing in the material’s conductive surface and its insulating interior. CREDIT Shambhu Ghimire/Stanford PULSE Institute

Abstract:
Topological insulators, or TIs, have two faces: Electrons flow freely along their surface edges, like cars on a superhighway, but can’t flow through the interior of the material at all. It takes a special set of conditions to create this unique quantum state – part electrical conductor, part insulator – which researchers hope to someday exploit for things like spintronics, quantum computing and quantum sensing. For now, they’re just trying to understand what makes TIs tick.

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces.

Menlo Park, CA | Posted on August 19th, 2022

In the latest advance along those lines, researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University systematically probed the “phase transition” in which a TI loses its quantum properties and becomes just another ordinary insulator.

They did this by using spiraling beams of laser light to generate harmonics – much like the vibrations of a plucked guitar string – from the material they were examining. Those harmonics make it easy to distinguish what’s happening in the superhighway layer from what’s happening in the interior and see how one state gives way to the other, they reported in Nature Photonics today.

“The harmonics generated by the material amplify the effects we want to measure, making this a very sensitive way to see what’s going on in a TI,” said Christian Heide, a postdoctoral researcher with the Stanford PULSE Institute at SLAC, who led the experiments.

“And since this light-based approach can be done in a lab with tabletop equipment, it makes exploring these materials easier and more accessible than some previous methods.”

These results are exciting, added PULSE principal investigator Shambhu Ghimire, because they show the new method has potential for watching TIs flip back and forth between superhighway and insulating states as it happens and in fine detail – much like a using camera with a very fast shutter speed.

A long harmonics journey

This was the latest in a series of studies led by Ghimire and PULSE Director David Reis on high harmonic generation, or HHG, a phenomenon that shifts laser light to higher energies and frequencies by shining it through a material. The frequencies are shifted in distinct steps, like notes made by pressing on a guitar string.

Over the past dozen years, their research team has managed to do this in a number of materials that were thought to be unlikely or even impossible candidates for HHG, including a crystal, frozen argon gas and an atomically thin semiconductor material. They were even able to produce attosecond laser pulses – which are just a billionth of a billionth of a second long and can be used to observe and control the movements of electrons – by shining a laser through ordinary glass.

Four years ago, postdoctoral researcher Denitsa Baykusheva joined the PULSE group with the aim of seeing if it was possible to generate HHG in topological insulators – a feat that had never been achieved in any quantum material. Over several years of work the team discovered that yes, it could be done, but only if the laser light was circularly polarized.

And this spiraling laser light had a bonus: By varying its polarization, they were able to get strong, separate signals from the TI’s superhighway surface and its roadblocked interior. This allowed them to easily distinguish what was going on in those two contrasting parts of the material.

In the current study, they set out to demonstrate what the new method could do by varying the composition of their TI material, bismuth selenide, and the properties of the ultrashort pulses of laser light they hit it with to see how each combination affected the harmonics the material generated.

Spirals meet impurities

First they took their samples to SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) for examination with an X-ray technique called angle-resolved photoemission spectroscopy, or ARPES. This allowed them to narrow down the general neighborhood where the transition takes place.

Then, back in the lab, they zoomed in to see more detail.

They prepared a series of bismuth selenide samples – some pure and others containing varying levels of a chemical impurity that’s known to affect electron behavior. Some of the samples were topological insulators and others were plain insulators.

Then they hit the samples with laser pulses of different energies and degrees and directions of polarization.

They discovered that circularly polarized pulses, especially the ones that spiraled clockwise, were much more efficient at producing high harmonics from superhighway surfaces than from insulating parts of the material. “The difference between the two was huge,” Heide said, so the team could easily tell the two states apart.

While pure samples were classic TIs, the material began to lose its topological abilities at an impurity level of about 4% and lost them altogether by 20%. At that point the material was an ordinary insulator.

The ultrashort laser pulses used in this study – about 100 femtoseconds, or millionths of a billionth of a second, long – pass right through the sample without damaging it, and can be tuned to probe any spot inside it, Heide said: “That’s a very big benefit.”

And like a camera with a super-fast shutter speed, this relatively small and affordable laser setup should be able to observe the characteristics of the topological transition, as well as other electronic properties and processes, in much finer detail and as they change in real time, Ghimire said.

“That’s one possibility that makes this all-optical method interesting and gives it a wide range of potential applications,” he said, “and it’s something we plan to explore in future experiments.”

Researchers from SSRL, the Stanford Institute for Materials and Energy Sciences (SIMES) and Harvard University also contributed to this work, and a team at Rutgers University prepared the samples used in the experiments. The study was funded primarily by the DOE Office of Science. SSRL is a DOE Office of Science user facility.

####

About DOE/SLAC National Accelerator Laboratory
SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

For more information, please click here

Contacts:
Glennda Chui
DOE/SLAC National Accelerator Laboratory

Office: 510-507-2766

Copyright © DOE/SLAC National Accelerator Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Citation: Christian Heide et al., Nature Photonics, 18 August 2022 (10.1038/s41566-022-01050-7):

Related News Press

Quantum Physics

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Bridging light and electrons January 12th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Quantum Computing

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project