Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists unravel ‘Hall effect’ mystery in search for next generation memory storage devices

Abstract:
An advance in the use of antiferromagnetic materials in memory storage devices has been made by an international team of physicists.

Scientists unravel ‘Hall effect’ mystery in search for next generation memory storage devices

Edgbaston, UK | Posted on August 19th, 2022

Antiferromagnets are materials that have an internal magnetism caused by the spin of electrons, but almost no external magnetic field. They are of interest because of their potential for data storage since absence of this external (or ‘long range’) magnetic field means the data units – bits – can be packed in more densely within the material.

This is in contrast to ferromagnets, used in standard magnetic memory devices. The bits in these devices do generate long-range magnetic fields, which prevent them being packed too closely, because otherwise they would interact.

The property that is measured to read out an antiferromagnetic bit is called the Hall effect, which is a voltage that appears perpendicular to the applied current direction. If the spins in the antiferromagnet are all flipped, the Hall voltage changes sign. So one sign of the Hall voltage corresponds to a ‘1’, and the other sign to a ‘0’ – the basis of binary code used in all computing systems.

Although scientists have known about the Hall effect in ferromagnetic materials for a long time, the effect in antiferromagnets has only been recognised in the past decade or so and is still poorly understood.

A team of researchers at the University of Tokyo, in Japan, Cornell and Johns Hopkins Universities in the USA and the University of Birmingham in the UK have suggested an explanation for the ‘Hall effect’ in a Weyl antiferromagnet (Mn3Sn), a material which has a particularly strong spontaneous Hall effect.

Their results, published in Nature Physics, have implications for both ferromagnets and antiferromagnets – and therefore for next generation memory storage devices overall.

The researchers were interested in Mn3Sn because it is not a perfect antiferromagnet, but does have a weak external magnetic field. The team wanted to find out if this weak magnetic field was responsible for the Hall effect.

In their experiment, the team used a device invented by Doctor Clifford Hicks, at the University of Birmingham, who is also a co-author on the paper. The device can be used to apply a tunable stress to the material being tested. By applying this stress to this Weyl antiferromagnet, the researchers observed that the residual external magnetic field increased.

If the magnetic field were driving the Hall effect, there would be a corresponding effect on the voltage across the material. The researchers showed that, in fact, the voltage does not change substantially, proving that the magnetic field is not important. Instead, they concluded, the arrangement of spinning electrons within the material is responsible for the Hall effect.

Clifford Hicks, co-author on the paper at the University of Birmingham, said: “These experiments prove that the Hall effect is caused by the quantum interactions between conduction electrons and their spins. The findings are important for understanding – and improving – magnetic memory technology.”

####

For more information, please click here

Contacts:
Beck Lockwood
University of Birmingham

Copyright © University of Birmingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Possible Futures

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Graphene grows – and we can see it March 24th, 2023

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Chip Technology

Graphene grows – and we can see it March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Memory Technology

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Researchers develop innovative tool for measuring electron dynamics in semiconductors: Insights may lead to more energy-efficient chips and electronic devices March 3rd, 2023

Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second January 20th, 2023

Scientists take control of magnetism at the microscopic level: Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity August 26th, 2022

Discoveries

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Graphene grows – and we can see it March 24th, 2023

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Announcements

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project