Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists unravel ‘Hall effect’ mystery in search for next generation memory storage devices

Abstract:
An advance in the use of antiferromagnetic materials in memory storage devices has been made by an international team of physicists.

Scientists unravel ‘Hall effect’ mystery in search for next generation memory storage devices

Edgbaston, UK | Posted on August 19th, 2022

Antiferromagnets are materials that have an internal magnetism caused by the spin of electrons, but almost no external magnetic field. They are of interest because of their potential for data storage since absence of this external (or ‘long range’) magnetic field means the data units – bits – can be packed in more densely within the material.

This is in contrast to ferromagnets, used in standard magnetic memory devices. The bits in these devices do generate long-range magnetic fields, which prevent them being packed too closely, because otherwise they would interact.

The property that is measured to read out an antiferromagnetic bit is called the Hall effect, which is a voltage that appears perpendicular to the applied current direction. If the spins in the antiferromagnet are all flipped, the Hall voltage changes sign. So one sign of the Hall voltage corresponds to a ‘1’, and the other sign to a ‘0’ – the basis of binary code used in all computing systems.

Although scientists have known about the Hall effect in ferromagnetic materials for a long time, the effect in antiferromagnets has only been recognised in the past decade or so and is still poorly understood.

A team of researchers at the University of Tokyo, in Japan, Cornell and Johns Hopkins Universities in the USA and the University of Birmingham in the UK have suggested an explanation for the ‘Hall effect’ in a Weyl antiferromagnet (Mn3Sn), a material which has a particularly strong spontaneous Hall effect.

Their results, published in Nature Physics, have implications for both ferromagnets and antiferromagnets – and therefore for next generation memory storage devices overall.

The researchers were interested in Mn3Sn because it is not a perfect antiferromagnet, but does have a weak external magnetic field. The team wanted to find out if this weak magnetic field was responsible for the Hall effect.

In their experiment, the team used a device invented by Doctor Clifford Hicks, at the University of Birmingham, who is also a co-author on the paper. The device can be used to apply a tunable stress to the material being tested. By applying this stress to this Weyl antiferromagnet, the researchers observed that the residual external magnetic field increased.

If the magnetic field were driving the Hall effect, there would be a corresponding effect on the voltage across the material. The researchers showed that, in fact, the voltage does not change substantially, proving that the magnetic field is not important. Instead, they concluded, the arrangement of spinning electrons within the material is responsible for the Hall effect.

Clifford Hicks, co-author on the paper at the University of Birmingham, said: “These experiments prove that the Hall effect is caused by the quantum interactions between conduction electrons and their spins. The findings are important for understanding – and improving – magnetic memory technology.”

####

For more information, please click here

Contacts:
Beck Lockwood
University of Birmingham

Copyright © University of Birmingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Memory Technology

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project