Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi

Illustration of the wide range of electrocatalytic and photocatalytic processes and applications for porphyrin framework materials
CREDIT
Nano Research Energy, Tsinghua University Press
Illustration of the wide range of electrocatalytic and photocatalytic processes and applications for porphyrin framework materials CREDIT Nano Research Energy, Tsinghua University Press

Abstract:
Some of the economic sectors that are the hardest to decarbonize would benefit from the emergence of substantially more efficient catalysts involved in energy conversion chemical reactions. A breakthrough here might depend upon the use of pigments widely deployed in biological processes integrated as a catalyst into novel and highly porous molecular structures that act sort of like sponges.

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi

Tsinghua, China | Posted on July 22nd, 2022

A paper describing the state of play in this field and the challenges it faces was published in the journal Nano Research Energy on May 29.



In recent years, porphyrins and metalloporphyrins have played an increasingly important role in biomimetic chemistry, solar energy utilization, medicine, and a great many other applications. But use of porphyrins in electrocatalysis and photocatalysis reactions central to many energy conversion processes useful for the clean transition was found to be unstable, deactivate, and difficult to recycle, which has limited the further development of these energy conversion technologies.



So scientists have begun to consider the integration of porphyrins as the organic ligands (the ion that binds to a central metal atom in a complex molecule) into synthetic molecular structures known as metal-organic frameworks (MOFs) and their twin, covalent-organic frameworks (COFs)—known as porphyrin-based framework materials.



“This should in principle deliver excellent electrocatalysis and photocatalysis performance as the MOF and COF structures are simple to synthesize and highly designed, thus much more controllable and structurally stable,” said Yusuke Yamauchi, a co-author of the paper and researcher with the Australian Institute for Bioengineering and Nanotechnology at the University of Queensland.



“The researchers, who are themselves involved in porphyrin-based framework materials development, put together a review article describing the state of play in their field. Such review papers are necessary for young fields to advance as they clarify current understanding, discuss advances and challenges, identify research gaps and can even offer guidelines for policy and tips on best practice,” Huan Pang, a co-author of the paper and the researcher with the School of Chemistry and Chemical Engineering at the Yangzhou University, China



The paper explores all the current and potential applications of porphyrin-based framework material catalysts, and finds that there remains great potential, but the field confronts several challenges.



In an economy of net-zero greenhouse gas emissions, not everything can be electrified—particularly long-haul heavy transport—and so some form of clean fuels, such as carbon-neutral synthetic hydrocarbons, ammonia or hydrogen will be necessary. All these fuels involve the conversion of clean energy—whether from the sun, wind, water or uranium—into transportable and stable chemical energy. Part of this process requires the production of clean hydrogen through the use of electricity, light or heat to split water into its constituent elements, hydrogen and oxygen.



Hydrocarbons are composed of differing ratios of carbon and hydrogen, hence the name. Thus the clean, synthetic versions replacing their dirty fossil cousins will require drawing down carbon dioxide from the atmosphere and transforming it into various usable forms of carbon as an input to be married to the clean hydrogen. To draw down atmospheric carbon and make use of it is also known as carbon capture and utilization (CCU).



All these processes, and many others involved in the clean transition (the move from fossil fuels to clean technologies) such as the use of fuel cells and light collection, are in effect chemical reactions that convert energy from one form to another, more usable form. These chemical reactions require addition of substances known as catalysts that speed the reaction up. Some of those catalysts are extremely expensive such as platinum, or are not efficient enough for the end product to compete with fossil fuels, or produce their own environmental challenges.



Thus the hunt is on for more efficient, cheaper and cleaner catalysts such as porphyrin,



The development of efficient non-precious porphyrin-based framework material catalysts to replace precious metal catalysts remains a significant hurdle. The design and construction of porphyrin blocks currently mainly relies on a highly symmetrical design, which limits the diversity of porphyrin framework families and affects their potential catalytic applications. Novel structures that employ porphyrin units with asymmetric design should be considered to extend the substance’s utility.



The cost of preparing porphyrin framework materials remains high and so it is urgent that engineers develop new synthesis methods if these catalysts are to be taken up in large-scale industrial applications. Reducing the number of steps required in synthesis is an important research, but it is also extremely difficult to do this.



They conclude however that should such challenges be overcome, porphyrin-based framework materials could be a game-changer in the commercialisation of energy conversion processes essential for some of the sectors that are the very hardest to decarbonize.



Porphyrins are some of biology’s hardest working substances. This class of pigments is deployed in a wide array of vital processes, from photosynthesis to breathing. Derivatives of these water-soluble, ring-shaped molecules that bind metal ions include chlorophylls in plants and the hemoglobins that carry oxygen in the blood of animals. They also enhance the catalytic activities of enzymes in a range of other life-giving chemical reactions. Metalloporphyrins are of particular interest with respect to the clean transition due to their role as catalysts in water splitting to produce hydrogen and oxygen.

####

About Tsinghua University Press
About Nano Research Energy



Nano Research Energy is launched by Tsinghua University Press, aiming at being an international, open-access and interdisciplinary journal. We will publish research on cutting-edge advanced nanomaterials and nanotechnology for energy. It is dedicated to exploring various aspects of energy-related research that utilizes nanomaterials and nanotechnology, including but not limited to energy generation, conversion, storage, conservation, clean energy, etc. Nano Research Energy will publish four types of manuscripts, that is, Communications, Research Articles, Reviews, and Perspectives in an open-access form.



About SciOpen



SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

For more information, please click here

Contacts:
Yao Meng
Tsinghua University Press

Office: 86-108-347-0574

Copyright © Tsinghua University Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Chemistry

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Liquid crystal templated chiral nanomaterials October 14th, 2022

Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022

Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals September 23rd, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Nanomedicine

Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022

Advanced nanoparticles provide new weapon to fight difficult cancers: Researchers use nanoparticles to deliver a bacterially derived compound that targets the STING pathway to suppress tumor growth and metastasis by disrupting blood vessels and stimulating immune response October 28th, 2022

Smart materials: metal cations-recognizable thermoresponsive polymers: Osaka Metropolitan University scientists developed a novel polymer, the thermoresponsiveness of which can easily be regulated by changing the type and mixing ratio of ionic species October 14th, 2022

Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Environment

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Scientists have proposed a new material for perovskite solar cells: It is cheaper its analogues, easier to manufacture and to modify October 28th, 2022

Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022

Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications October 14th, 2022

Nanobiotechnology

Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022

Advanced nanoparticles provide new weapon to fight difficult cancers: Researchers use nanoparticles to deliver a bacterially derived compound that targets the STING pathway to suppress tumor growth and metastasis by disrupting blood vessels and stimulating immune response October 28th, 2022

Smart materials: metal cations-recognizable thermoresponsive polymers: Osaka Metropolitan University scientists developed a novel polymer, the thermoresponsiveness of which can easily be regulated by changing the type and mixing ratio of ionic species October 14th, 2022

Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project