Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries

The enhanced lithiophilic properties and the rigid array structure of Al2O3-CNTA/3DG synergistically induce dendrite-free and stable Li anode. The LOBs full battery assembled with the Al2O3-CNTA/3DG-Li anode and CNTA/3DG cathode achieves a long-term cycling stability.
CREDIT
Journal of Energy Chemistry
The enhanced lithiophilic properties and the rigid array structure of Al2O3-CNTA/3DG synergistically induce dendrite-free and stable Li anode. The LOBs full battery assembled with the Al2O3-CNTA/3DG-Li anode and CNTA/3DG cathode achieves a long-term cycling stability. CREDIT Journal of Energy Chemistry

Abstract:
Recently, Dr. Yue Li and co-workers (from Tianjin University) prepared lithiophilic aluminum oxide (Al2O3) seeds induced rigid carbon nanotube arrays/three-dimensional graphene (Al2O3-CNTA/3DG) as an effective host material for the Li anode of lithium-oxygen batteries (LOBs). It was found that the Al2O3 nanoparticles greatly enhanced the rigidity of CNTA, yielding significant inhibition of Li dendrite growth. Additionally, lithiophilic Al2O3 nanoparticles reacted with Li+ to form LiAlO2 nanoparticles, which facilitated Li+ transport and stabilized the solid electrolyte interphase (SEI) film. Finally, the LOB assembled with the Al2O3-CNTA/3DG-Li anode and CNTA/3DG cathode exhibited enhanced redox kinetics and could be stably cycled 160 times at a current density of 100 mA g-1 and limited capacity of 500 mAh g-1. This work provided a new strategy for solving the issues of Li dendrite growth and short cycling life for LOBs.

Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries

Dalian, China | Posted on July 22nd, 2022

This work was published in the Journal of Energy Chemistry as a research article entitled “Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries”.

####

About Dalian Institute of Chemical Physics, Chinese Academy Sciences
The Journal of Energy Chemistry is a publication that mainly reports on creative researches and innovativeapplications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy,as well as the conversions of biomass and solar energy related with chemical issues to promote academicexchanges in the field of energy chemistry and to accelerate the exploration, research and development of energyscience and technologies.

For more information, please click here

Contacts:
Xiaoluan Wei
Dalian Institute of Chemical Physics, Chinese Academy Sciences

Office: 86-041-184-379-021

Copyright © Dalian Institute of Chemical Physics, Chinese Academy Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

Automotive/Transportation

A novel graphene based NiSe2 nanocrystalline array for efficient hydrogen evolution reaction July 15th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project