Home > Press > Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries
![]() |
| The enhanced lithiophilic properties and the rigid array structure of Al2O3-CNTA/3DG synergistically induce dendrite-free and stable Li anode. The LOBs full battery assembled with the Al2O3-CNTA/3DG-Li anode and CNTA/3DG cathode achieves a long-term cycling stability. CREDIT Journal of Energy Chemistry |
Abstract:
Recently, Dr. Yue Li and co-workers (from Tianjin University) prepared lithiophilic aluminum oxide (Al2O3) seeds induced rigid carbon nanotube arrays/three-dimensional graphene (Al2O3-CNTA/3DG) as an effective host material for the Li anode of lithium-oxygen batteries (LOBs). It was found that the Al2O3 nanoparticles greatly enhanced the rigidity of CNTA, yielding significant inhibition of Li dendrite growth. Additionally, lithiophilic Al2O3 nanoparticles reacted with Li+ to form LiAlO2 nanoparticles, which facilitated Li+ transport and stabilized the solid electrolyte interphase (SEI) film. Finally, the LOB assembled with the Al2O3-CNTA/3DG-Li anode and CNTA/3DG cathode exhibited enhanced redox kinetics and could be stably cycled 160 times at a current density of 100 mA g-1 and limited capacity of 500 mAh g-1. This work provided a new strategy for solving the issues of Li dendrite growth and short cycling life for LOBs.
This work was published in the Journal of Energy Chemistry as a research article entitled “Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries”.
####
About Dalian Institute of Chemical Physics, Chinese Academy Sciences
The Journal of Energy Chemistry is a publication that mainly reports on creative researches and innovativeapplications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy,as well as the conversions of biomass and solar energy related with chemical issues to promote academicexchanges in the field of energy chemistry and to accelerate the exploration, research and development of energyscience and technologies.
For more information, please click here
Contacts:
Xiaoluan Wei
Dalian Institute of Chemical Physics, Chinese Academy Sciences
Office: 86-041-184-379-021
Copyright © Dalian Institute of Chemical Physics, Chinese Academy Sciences
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Automotive/Transportation
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||