Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Crystal phase engineering offers glimpse of future potential, researchers say

With two decades of focused attention on how regulating such rearrangements, a process called phase engineering may enable sustainable energy conversion processes.
CREDIT
Nano Research, Tsinghua University Press
With two decades of focused attention on how regulating such rearrangements, a process called phase engineering may enable sustainable energy conversion processes. CREDIT Nano Research, Tsinghua University Press

Abstract:
Atomic rearrangement changes a material’s physical and chemical properties, which may lead to potential applications across disciplines, including in sustainable energy. With two decades of focused attention on how regulating such rearrangements, a process called phase engineering, may enable sustainable energy conversion processes, researchers in China have summarized the work so far, including how the field might progress.

Crystal phase engineering offers glimpse of future potential, researchers say

Beijing, China | Posted on July 15th, 2022

They published their review on July 11 in Nano Research, with a specific focus on electrocatalysts. These materials trigger, enhance or resolve the chemical and electrical reactions involved in converting energy into storable or usable formats. They often serve as an electrode or as an electrode component.



“Phase engineering is an important strategy for designing efficient electrocatalysts toward these energy conversions, because it enables all catalytically active atoms to rearrange and form new lattices,” said co-corresponding author Xiaoxin Zou, professor, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University. “This provides great opportunity to rationally manipulate atoms to discover attractive structural frameworks and to achieve better electrocatalysis. And while, in recent years, several researchers have summarized the preparation of nanomaterials with novel arrangements, this is the first systematic review toward rationalizing how these phases influence electrocatalytic activity.”



These various atomic arrangements are known as crystal phases. By changing how the atoms are arranged on the surface of a solid material, or in its bulk, can drastically change what the material can do. Zou noted, however, that the surface is essentially an extension of the bulk and cannot exist independently, so their connection is key to developing desirable and stable electrocatalysts.



“The underlying logic of phase engineering lies in an intimate relationship between the properties of the surface and of the bulk of a catalyst,” Zou said. “Engineering the bulk phase of a catalyst, which directly influences the surface, is a powerful strategy to design smart catalysts both internally and externally.”



The crystal structure of the bulk determines the material’s electronic structure, its conductivity and, largely, the composition of the surface layer. Different bulk crystal structures possess different characteristics and surface energies, leading to diverse morphology and catalytically active sites. Even for catalysts that experience significant surface damage or reconstruction during the catalysis process, Zou said, the bulk’s initial crystal structure strongly influences reconstitution and the final structure of the surface.



Over the last 20 years, several researchers have investigated this relationship, exploring unconventional electrocatalytic phases and how to induce such transformations. Driven by the demand for sustainable energy conversion processes, such as nitrogen fixation and carbon dioxide reduction, researchers advanced characterization techniques, as well as the theory underlying experimental work.



“These things made it possible to precisely and accurately understand the effects of crystal phases on electrocatalytic performance,” Zou said. "So, it is time to summarize phase engineering-related research that helps unravel phase-performance relationships and refines prediction in electrocatalysis studies.”



Next, Zou and his team recommend that researchers pursue four main areas to further advance crystal phase engineering for catalysis research.



“To develop competent catalysts for different energy conversion processes from a phase focus, we propose exploring the relationship between the crystal phase and catalytic activity levels; combining phase engineering with other design strategies; unraveling the formation and evolution mechanisms of unconventional phases; and enriching catalytic research of more fluid phases,” Zou said.



Contributors include Hui Chen, Mingcheng Zhang, Ke Sun, Lina Wang, Zhoubing Xie, Yucheng Shen, Xindi Han and Lan Yang, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University; and Yanfei Wang, Petrochina Petrochemical Research Institute.



The National Natural Science Foundation of China, the Jilin Province Science and Technology Development Plan, the Science and Technology Research Program of Education Department of Jilin Province and the 111 Project supported this research.

####

About Tsinghua University Press
Nano Research is a peer-reviewed, international and interdisciplinary research journal, sponsored by Tsinghua University and the Chinese Chemical Society. It offers readers an attractive mix of authoritative and comprehensive reviews and original cutting-edge research papers. After more than 10 years of development, it has become one of the most influential academic journals in the nano field. Rapid review to ensure quick publication is a key feature of Nano Research. In 2022 InCites Journal Citation Reports, Nano Research has an Impact Factor of 10.269 (9.136, 5 years), the total cites reached 29620, ranking first in China's international academic journals, and the number of highly cited papers reached 120, ranked among the top 2.8% of over 9000 academic journals.



About SciOpen



SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

For more information, please click here

Contacts:
Yao Meng
Tsinghua University Press

Office: 86-108-347-0574

Copyright © Tsinghua University Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Chemistry

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Govt.-Legislation/Regulation/Funding/Policy

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire: The 2.6nm-long single molecule wire has quasi-metallic properties and shows an unusual increase of conductance as the wire length increases; its excellent conductivity holds great promis July 8th, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries July 22nd, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Research partnerships

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project