Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M

Abstract:
Inspired by the barn owl’s neuroanatomy, CEA-Leti has developed an event-driven, object-localization system that couples state-of-the-art piezoelectric, ultrasound transducer sensors to a neuromorphic, resistive memories-based computational map.

CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M

Grenoble, France | Posted on July 8th, 2022

Presented in a paper published recently in Nature Communications, the research team describes development of an auditory-processing system that increases energy efficiency by up to five orders of magnitude compared to conventional localization systems.

“Real-world sensory-processing applications require compact, low-latency, and low-power computing systems,” the paper, “Neuromorphic Object Localization Using Resistive Memories and Ultrasonic Transducers”, explains. “Enabled by their in-memory, event-driven computing abilities, hybrid memristive-complementary metal-oxide semiconductor (CMOS) neuromorphic architectures provide an ideal hardware substrate for such tasks.”

Neurobiology offers a spectrum of ultralow-power solutions to efficiently process sensory information, as different animals and insects have evolved to effectively perform difficult tasks with limited power. At the heart of biological signal processing are two fundamental concepts: event-driven sensing and analog in-memory computing.

“We drew inspiration from biology to incorporate these two aspects of computation into our hardware, leveraging CEA-Leti’s state-of-the-art ultrasound sensors and resistive memory technologies,” said Elisa Vianello, senior scientist and Edge AI program coordinator, and senior author of the paper. “In particular, we focused on the acoustic-based, object-localization task. Owls efficiently solve this problem and thus we extrapolated their computational principles into our system.”

CEA-Leti built and tested this object localization system with the help of CEA-List, University of Zurich, University of Tours and University of Udine researchers. The team leveraged CEA-Leti’s successes in developing piezoelectric micromachined ultrasound transducer (pMUT) sensors and its advancements in spiking neural networks based on resistive memory technologies.

The researchers’ first challenge was developing a pre-processing pipeline that extracts the key information from pMUTs, which encode information based on brief events or spikes. This temporal signal coding leads to higher energy-efficiencies compared to traditional continuous analogue or digital data, so that only relevant data are processed.

‘Bio-inspired analog RRAM-based circuit’

“Our system, which could have future use in sensor-fusion applications, mimics the owl’s extremely energy- efficient prey-capture mechanism, which is preceded by combined auditory and visual search,” said Filippo Moro, lead author of the paper. “The ultralow power consumption auditory search is always active and when a specific auditory neuron fires, the owl has the information it needs to start the visual search, which is more precise but more costly in terms of energy consumption.”

The second challenge was designing and fabricating a bio-inspired analog RRAM-based circuit to efficiently process the extracted events and estimate an object’s location. Resistive memory provides a compact solution to store the synaptic weights and RRAMs are non-volatile devices, a feature that matches the asynchronous event-driven nature of the team’s proposed system, resulting in no power consumption when the system is idle.

“To minimize the energy consumption of the object localization system, researchers envisioned, designed, and implemented an efficient RRAM-based neuromorphic circuit that processes signal information produced by embedded sensors to calculate a targeted object’s position in real time,” the paper reports. “Whereas conventional processing techniques would continuously sample the detected signal and crunch calculations to extract the useful information, the proposed neuromorphic solution computes asynchronously as the useful information arrives: this has allowed us to increase the system’s energy efficiency by up to five orders of magnitude.”

Over the past decade, CEA-Leti has made substantial progress in pMUT sensors and spiking neural networks based on resistive memory technologies. The current work shows that combining visual sensors, such as DVS cameras, and the proposed pMUT-based audition sensor should be explored to develop future consumer robotics.

In addition, mimicking a barn owl’s precise and efficient object-localization system is another example of the institute’s work to prove that bio-inspired concepts can dramatically improve performance of Edge-AI systems. In March, Vianello received a €3 million grant from the European Research Council (ERC) to build nanoscale memory devices inspired by insect nervous systems for such applications as consumer robotics, implantable medical diagnostic microchips and wearable electronics.

####

About CEA-Leti
Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 3,100 patents, 11,000 sq. meters of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 70 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.

Technological expertise
CEA has a key role in transferring scientific knowledge and innovation from research to industry. This high-level technological research is carried out in particular in electronic and integrated systems, from microscale to nanoscale. It has a wide range of industrial applications in the fields of transport, health, safety and telecommunications, contributing to the creation of high-quality and competitive products.

For more information, please click here

Contacts:
Press Contact
Agency
Sarah-Lyle Dampoux

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Robotics

Nanostructured fibers can impersonate human muscles June 3rd, 2022

Self-propelled, endlessly programmable artificial cilia: Simple microstructures that bend, twist and perform stroke-like motions could be used for soft robotics, medical devices and more May 6th, 2022

Shape memory in hierarchical networks – the astonishing property that allows manipulation of morphing materials with micro scale resolutions February 25th, 2022

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Nanomedicine

Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022

Advanced nanoparticles provide new weapon to fight difficult cancers: Researchers use nanoparticles to deliver a bacterially derived compound that targets the STING pathway to suppress tumor growth and metastasis by disrupting blood vessels and stimulating immune response October 28th, 2022

Smart materials: metal cations-recognizable thermoresponsive polymers: Osaka Metropolitan University scientists developed a novel polymer, the thermoresponsiveness of which can easily be regulated by changing the type and mixing ratio of ionic species October 14th, 2022

Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022

Sensors

Spin photonics to move forward with new anapole probe November 4th, 2022

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers October 14th, 2022

Taking salt out of the water equation October 7th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project