Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Organic water splitters get a boost

A KAUST-led international team has developed a nanoparticle photocatalyst that can generate hydrogen fuel from water more efficiently than their standard inorganic semiconductor counterparts.
CREDIT
© 2022 KAUST; Ivan Gromicho
A KAUST-led international team has developed a nanoparticle photocatalyst that can generate hydrogen fuel from water more efficiently than their standard inorganic semiconductor counterparts. CREDIT © 2022 KAUST; Ivan Gromicho

Abstract:
Organic semiconductor-based photocatalysts conceived by a KAUST-led team could make hydrogen easier to generate from water using sunlight.

Organic water splitters get a boost

Thuwal, Saudi Arabia | Posted on June 10th, 2022

Sunlight is the most abundant source of renewable energy, but its inability to produce consistent energy levels over time means it cannot meet energy needs on demand. A promising option is to store solar energy as clean hydrogen fuel, derived from water by the so-called hydrogen evolution reaction in the presence of a light-responsive catalyst.



Most hydrogen evolution photocatalysts consist of inorganic semiconductors, such as titanium dioxide, that almost exclusively absorb ultraviolet light. But because ultraviolet light represents less than five percent of the solar spectrum, the resulting photocatalysts are not efficient enough for commercial use.



An international team led by Iain McCulloch and postdoc Jan Kosco were able to develop organic semiconductor-based photocatalysts because they could tune the semiconductor bandgaps — which define the absorption wavelength range — to absorb visible light.



“All else being equal, the more light a photocatalyst absorbs, the more efficiently it can convert solar energy into hydrogen,” Kosco explains. “So, it is important to develop photocatalysts that are active over a broad range of ultraviolet-visible-infrared wavelengths to maximize light absorption.”



When exposed to light, semiconductor-based photocatalysts generate pairs of electrons and positively charged holes, or excitons, which dissociate into free charges that subsequently can migrate to the photocatalyst surface and drive hydrogen evolution. However, excitons are tightly bound in typical single-component organic semiconductors, which restricts charge separation and photocatalytic efficiency.



The researchers combined electron donor and acceptor semiconductor materials to form nanoparticles, known as heterojunction photocatalysts, whose overall bandgap configuration promotes exciton dissociation at the semiconductor interface.



“This is analogous to the bulk heterojunction used in organic solar cells,” Kosco says. “We, therefore, generated more charges in these nanoparticles than in those composed of individual semiconductors, which improved hydrogen production.”



Unexpectedly, the heterojunction resulted in extremely long-lived photogenerated charges in the nanoparticles.



“Charges typically recombine on the microsecond timescale, but we observed charges in our nanoparticles even a few seconds after photoexcitation, which is exceptionally long for photogenerated charges in organic semiconductors,” Kosco says. This is critical for catalyst performance because it gives more time for the charges to take part in relatively slow redox reactions at the nanoparticle surface, he adds.



The team is now exploring ways to apply the new photocatalysts to water splitting Z-schemes, where hydrogen and oxygen evolution photocatalysts are coupled to simultaneously drive the production of hydrogen and oxygen. They are also developing organic semiconductor photocatalysts for oxygen evolution.

####

For more information, please click here

Contacts:
Media Contact

Michael Cusack
King Abdullah University of Science & Technology (KAUST)

Office: 009660128083040

Expert Contact

Jan Kosco
King Abdullah University of Science and Technology (KAUST)

Copyright © King Abdullah University of Science & Technology (KAUST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Energy

Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

Advances in thermoelectric power generation possible with various ‘metal chalcogenide’ materials, recent review shows November 4th, 2022

Water

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Scientists offer solutions for risky tap water June 17th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project