Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoscale bowtie antenna under optical and electrical excitations

Abstract:
A new publication from Opto-Electronic Science; DOI 10.29026/oes.2022.210004 overviews nanoscale bowtie antenna under optical and electrical excitations.

Nanoscale bowtie antenna under optical and electrical excitations

Hefei, China | Posted on June 3rd, 2022

Optical nanoantennas, capable of converting external electromagnetic fields into a confined energy and vice versa, play a very important role in optical field manipulation. Among them, the bowtie antenna has received extensive attention from researchers in related fields because of its strong field localization and enhancement under the optical or electrical excitation, enabling a host of application scenarios.



The authors review the widespread applications of optically/electrically driven nanoscale bowtie antennas summarizing the applications of optically excited bowtie antennas in the fields of optical imaging/trapping, nonlinear optics, nanolithography, and nano-sources. The principle, preparation, characterization of the electrically driven bowtie tunnel junction are discussed, and application prospects in ultrafast tunable optical nano-sources. This paper provides a comprehensive overview of bowtie based nanophotonics.

# # # # # #



Dr. Liang Wang is a professor at University of Science and Technology of China (USTC). After obtaining a PhD in mechanical engineering from Purdue University, he has served as R&D manager and senior R&D engineer in Canon, Lam Research and IBM. In 2014, he joined USTC engaging in research in the fields of nano-optics, optoelectronic devices and integration. In recent years, the laboratory has published more than 50 papers and filed/authorized more than 30 national/international patents. In the field of near-infrared single-photon detection chips, he led the team to successfully develop 16-μm and 12-μm window chips, which passed the test and acceptance of quantum communication enterprises. The key parameter dark count of the chip is one order of magnitude lower than that of foreign competitors, exhibiting a better performance. In the fields of high-speed data interconnection, data center, and 3D sensing, the high-speed waveguide photodetector chip and the array-type single-photon lidar chip are developed.



# # # # # #

Opto-Electronic Science (OES) is a peer-reviewed, open access, interdisciplinary and international journal published by The Institute of Optics and Electronics, Chinese Academy of Sciences as a sister journal of Opto-Electronic Advances (OEA, IF=9.682). OES is dedicated to providing a professional platform to promote academic exchange and accelerate innovation. OES publishes articles, reviews, and letters of the fundamental breakthroughs in basic science of optics and optoelectronics.

# # # # # #

####

For more information, please click here

Contacts:
Conor Lovett
Compuscript Ltd

Office: 353-614-75205

Copyright © Compuscript Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article reference Jiang ZJ, Liu YJ, Wang L. Applications of optically and electrically driven nanoscale bowtie antennas. Opto-Electron Sci 1, 210004 (2022). doi: 10.29026/oes.2022.210004:

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project