Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoscale chemically ordered-disordered domains in Fe3Pt alloys and their three-dimensional interface and lattice strain

The three-dimensional distribution of the Fe3Pt alloys prepared in this study with different degrees of chemical ordering is plotted in the figure (top). The size of ordered/disordered nanodomains and the lattice strain observed by high-resolution transmission electron microscopy is shown schematically in the lower left, and the magnetic moment modulation around the ordered/disordered interfaces is shown in the lower right.
CREDIT
©Science China Press
The three-dimensional distribution of the Fe3Pt alloys prepared in this study with different degrees of chemical ordering is plotted in the figure (top). The size of ordered/disordered nanodomains and the lattice strain observed by high-resolution transmission electron microscopy is shown schematically in the lower left, and the magnetic moment modulation around the ordered/disordered interfaces is shown in the lower right. CREDIT ©Science China Press

Abstract:
In solid-state matters, chemical ordering is often closely associated with their fantastic physical properties and specific chemical reaction mechanisms. Through the redistribution of atoms and chemical bonds, the modulation of chemical ordering can lead to effective lattice tuning and provide intrinsic lattice stress. However, the direct probing of the three-dimensional structure of chemically ordered/disordered interfaces remains a great challenge. Recently, the National Science Review published online the research results of Prof. Xianran Xing's group at the Institute of Solid State Chemistry, University of Science and Technology Beijing, which reveals the atomic distribution and lattice matching relationship of nano-scale ordered/disordered domains in Fe3Pt alloys with the help of the Pair Distribution Function (PDF) method. Through the lattice adjustment around the interfaces of nanodomains, the effective regulation of the magnetic properties and negative thermal expansion of lattice was obtained.

Nanoscale chemically ordered-disordered domains in Fe3Pt alloys and their three-dimensional interface and lattice strain

Beijing, China | Posted on May 27th, 2022

The present experimental and theoretical results from the research team provide convincing structural insights into the identification of the local structure of nanodomains in solids and the lattice matching around the interfaces, providing a structural basis for understanding chemical ordering at the atomic scale and developing new lattice design strategies.

####

For more information, please click here

Contacts:
Media Contact

Bei Yan
Science China Press

Office: 86-10-64015905

Expert Contacts

Qiang Li
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing


Xianran Xing
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Chemistry

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project