Home > Press > New nanomechanical oscillators with record-low loss
![]() |
Scanning electron micrograph of a polygon resonator. The inset shows the shape of the perimeter mode. CREDIT Mohammad J. Bereyhi (EPFL) |
Abstract:
The vibrational modes of nanomechanical resonators are analogous to different notes of a guitar string and have similar properties such as frequency (pitch) and lifetime. The lifetime is characterized by the quality factor, which is the number of times that the resonator oscillates until its energy is reduced by 70%. The quality factor is crucial for the modern applications of mechanical resonators as it determines the level of thermal noise, which is a limit for sensing weak forces and observation of quantum effects.
Now, scientists at EPFL led by Professor Tobias J. Kippenberg show that a regular polygon suspended at its vertices supports vibrational modes along the perimeter with extremely high quality factors. This is a consequence of the geometrical symmetry of regular polygons, combined with the elastic properties of structures under tension. This approach to loss-engineering has an important advantage over previous techniques: realizing high quality factors in devices with much smaller footprints.
“The new perimeter modes not only beat the record for the highest quality factor, but are almost 20 times more compact than devices with similar performance,” says Nils Engelsen, the study’s senior author. “The compactness comes with real practical benefits. In our laboratory, we try to measure and control mechanical vibrations at the quantum level using light, which requires suspension of mechanical resonators less than one micrometer from a structure which guides light. This feat is much simpler with compact devices.”
The uncomplicated design of the polygon resonators allows the authors to take one step further and make a chain of connected polygon resonators. This chain of coupled oscillators can behave strikingly different from a single resonator. The authors study the particular dynamics of this chain which arises from the way the resonators are connected.
Precision force sensing is an important application of nanomechanical resonators. By measuring the position fluctuations of a polygon resonator using an optical interferometer, the authors demonstrate that these resonators can measure force fluctuations as low as 1 attonewton. This level of sensitivity approaches that of state-of-the-art atomic force microscopes.
“We hope that the demonstrated force sensitivity of the polygons combined with their compactness and simplicity will inspire their use in actual force microscopes”, says Mohammad Bereyhi, who led the study. “So far, improvements in mechanical quality factors have come at the cost of increased size and increased design complexity, making state-of-the-art devices very difficult to fabricate. With perimeter modes it’s a different story. I believe that the simplicity of this new design greatly expands its potential to find new and promising applications.”
####
For more information, please click here
Contacts:
Nik Papageorgiou
Ecole Polytechnique Fédérale de Lausanne
Office: 41-216-932-105
Expert Contact
Tobias J. Kippenberg
EPFL
Office: +41 21 693 44 28
Copyright © Ecole Polytechnique Fédérale de Lausanne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Quantum Physics
HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022
News and information
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Possible Futures
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Sensors
‘Life-like’ lasers can self-organise, adapt their structure, and cooperate July 15th, 2022
Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022
Discoveries
HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Announcements
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |