Home > Press > Dynamic metasurfaces and metadevices empowered by graphene
![]() |
Overview of state-of-the-art selected functionalities of dynamic metasurfaces and metadevices empowered by graphene CREDIT OEA |
Abstract:
A new publication from Opto-Electronic Advances; DOI 10.29026/oea.2022.200098 overview dynamic metasurfaces and metadevices empowered by graphene.
Metasurfaces, artificial subwavelength structured interfaces, exhibit unprecedented capabilities to manipulate electromagnetic (EM) waves ranging from visible to terahertz and microwave frequencies.
In the past decade, static metasurfaces and metadevices have been researched extensively. Due to the passive nature of building blocks in general made of metals and/or dielectrics, however, their functionalities cannot be actively tuned in situ after fabrication, which seriously impedes their application scenarios such as varifocal lens, dynamic holography, and beam steering in LiDAR. Motivated by those significant requirements, scientists have struggled for years to improve the dynamical tunability of metasurfaces, and introducing active materials or components into the passive metasurfaces has been proposed as the first thought strategy.
To date, various active materials and components such as transparent conducting oxides, phase-change materials, 2D materials (particularly graphene), varactor diodes, elastic materials, and micro-electro-mechanical systems, have been demonstrated theoretically and experimentally to empower the active tunability to metasurfaces and metadevices by applying external thermal, electrical, optical, and mechanical stimulus, giving rise to a new direction, i.e., dynamic (e.g. tunable, reconfigurable, programable, intelligent, and digital coding) metasurfaces and metadevices. It should be noted that although previous researches provide a major source of inspiration for dynamic metasurfaces and metadevices, each type of active materials and components holds a set of unique characteristics, provides encouraging opportunities, and also suffers from different limitations as well as challenges. Several excellent review articles published in recent years have focused on this area to discuss the aforementioned issues. However, a comprehensive review on graphene-based dynamic metasurfaces and metadevices is still absent, which are of equal and even more significance due to the extraordinary properties of graphene.
In this article the authors divide graphene-empowered dynamic metasurfaces and metadevices are divided into two categories, i.e., metasurfaces with building blocks of structured graphene and hybrid metasurfaces integrated with graphene, as shown in Fig. 1. The state-of-the-art developments in dynamic spectrum manipulation, wavefront shaping, polarization control, and frequency conversion are highly elaborated in near/far fields and global/local ways, respectively. Remaining challenges and potential future developments are also outlined and analyzed.
The authors believe that due to the intrinsic advantages of compact footprint, remarkable electrical tunability, broadband and high-speed operation, graphene and graphene-like 2D materials are propelling the EM wave manipulations using metasurfaces to a new height: from static to dynamic, which will certainly revolutionize EM wave manipulations and allow for future commercial applications.
Article reference: Zeng C, Lu H, Mao D, Du YQ, Hua H et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5, 200098 (2022). doi: 10.29026/oea.2022.200098
Keywords metasurface / dynamic metasurface / graphene / graphene plasmons / light field manipulation / electromagnetic wave manipulation
# # # # # #
Chao Zeng is the associate professor of Northwestern Polytechnical University, mainly engaged in the research of micro/nanophotonics, nonlinear optics, and optical metasurfaces, and committed to providing new theories and technologies for novel light field manipulations, special fiber laser, and metadevices. To date, he has published 17 papers as first or corresponding author, which have been cited more than 400 times. One work is selected as the China’s Optics Important Achievements (2014). He has been awarded the Special Prize of President Scholarship for Postgraduate Students.
####
About Compuscript Ltd
Opto-Electronic Advances (OEA) is a high-impact, open access, peer reviewed monthly SCI journal with an impact factor of 9.682 (Journals Citation Reports for IF 2020). Since its launch in March 2018, OEA has been indexed in SCI, EI, DOAJ, Scopus, CA and ICI databases over the time and expanded its Editorial Board to 36 members from 17 countries and regions (average h-index 49).
The journal is published by The Institute of Optics and Electronics, Chinese Academy of Sciences, aiming at providing a platform for researchers, academicians, professionals, practitioners, and students to impart and share knowledge in the form of high quality empirical and theoretical research papers covering the topics of optics, photonics and optoelectronics.
For more information, please click here
Contacts:
Conor Lovett
Compuscript Ltd
Office: 353-614-75205
Copyright © Compuscript Ltd
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Graphene/ Graphite
Graphene grows – and we can see it March 24th, 2023
Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022
News and information
Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023
Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023
Semiconductor lattice marries electrons and magnetic moments March 24th, 2023
Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023
Wireless/telecommunications/RF/Antennas/Microwaves
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022
Possible Futures
New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023
Graphene grows – and we can see it March 24th, 2023
HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Discoveries
New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023
Graphene grows – and we can see it March 24th, 2023
HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Announcements
Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023
Semiconductor lattice marries electrons and magnetic moments March 24th, 2023
Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023
Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023
Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |