Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New quantum network shares information at a scale practical for future real-world applications: Researchers enable real-time adjustments to communication among three remote nodes in a quantum network

Quantum equipment in the "Alice” laboratory, where the researchers stored the photon source and the first node in the three-node quantum network.

CREDIT
Image courtesy of Carlos Jones, Oak Ridge National Laboratory
Quantum equipment in the "Alice” laboratory, where the researchers stored the photon source and the first node in the three-node quantum network. CREDIT Image courtesy of Carlos Jones, Oak Ridge National Laboratory

Abstract:
The Science
When particles of light called photons are paired together, or entangled, they can enable quantum communication across great distances. This entanglement means that changing the spin or other state of one photon also changes the paired photon, no matter how far apart they are. This link is what makes quantum communication possible. To test this ability, researchers built a quantum local area network (QLAN) that shared information among three systems in separate buildings using entangled photons. The team used a protocol called remote state preparation, where a successful measurement of one half of an entangled photon pair converts the other photon to the preferred state. The researchers performed this conversion across all the paired links in the QLAN—a feat not previously accomplished on a quantum network.

New quantum network shares information at a scale practical for future real-world applications: Researchers enable real-time adjustments to communication among three remote nodes in a quantum network

Washington, DC | Posted on April 22nd, 2022

The Impact
The QLAN connected a laboratory containing the photon source and the first node in the network to the second and third nodes using an existing fiber-optic network. Unlike conventional networks, the QLAN uses special switches that can make real-time adjustments without disconnecting users from the network. This allows network operators to respond to broken fibers or other problems by rerouting traffic—without disrupting the network’s speed or compromising security. The research demonstrates how quantum communications can scale from a lab to longer distances. It also helps lay the foundation for the quantum internet, which could eventually connect next-generation quantum computers. The findings could also improve quantum sensors, providing a new tool in the search for dark matter and other questions.

Summary
QLANs enhance the capabilities of local area networks that connect classical computing devices. Although entanglement can enable quantum key distribution (QKD), which has been the most common example of quantum communication, it also enables more general applications. The researchers who conducted this project have previously completed successful QKD experiments, but this method is limited because it only establishes security, not entanglement, between sites. For this new QLAN experiment, researchers from Oak Ridge National Laboratory (ORNL), Purdue University, and Stanford University located nodes named Alice, Bob, and Charlie in three different research laboratories in three separate buildings on the ORNL campus. While testing the QLAN, the team shared a signal from an antenna located in one of the laboratories to ensure that three GPS-based clocks assigned to each node were synchronized within a few nanoseconds and that they would not drift apart during the experiment. Having obtained precise timestamps for the arrival of entangled photons captured by photon detectors, the researchers sent these measurements from the QLAN to a classical network, where they compiled high-quality data from all three laboratory locations.



Funding
This work was funded by the Department of Energy Office of Science through the Early Career Research Program, the Transparent Optical Quantum Networks for Distributed Science Program, and the Office of Science Basic Energy Sciences program’s Materials Sciences and Engineering Division. Additional support was provided by the Intelligence Community Postdoctoral Research Fellowship Program at Oak Ridge National Laboratory and the Quantum Information Science and Engineering Network through the National Science Foundation.

####

For more information, please click here

Copyright © DOE/US Department of Energy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project