Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Development of low-power and high-efficiency artificial sensory neurons: 3T-OTS device to simulate the efficient information processing method of the human brain. A green light for the development of sensor-AI combined next-generation artificial intelligence “to be used in life a

Distinguishing COVID-19 infection through image learning of chest X-rays

CREDIT
Korea Institute of Science and Technology
Distinguishing COVID-19 infection through image learning of chest X-rays CREDIT Korea Institute of Science and Technology

Abstract:
Currently, AI services spread rapidly in daily life and in all industries. These services are enabled by connecting AI centers and terminals such as mobile devices, PCs, etc. This method, however, increases the burden on the environment by consuming a lot of power not only to drive the AI ​​system but also to transmit data. In times of war or disasters, it may become useless due to the power collapse and network failures, the consequences of which may be even more serious if it is an AI service in the life and safety field. As a next-generation artificial intelligence technology that can overcome these weaknesses, low-power and high-efficiency 'in-sensor computing' technology that mimics the information processing mechanism of the human nervous system is drawing attention

Development of low-power and high-efficiency artificial sensory neurons: 3T-OTS device to simulate the efficient information processing method of the human brain. A green light for the development of sensor-AI combined next-generation artificial intelligence “to be used in life a

Yeongi-gun, South Korea | Posted on April 8th, 2022

The Korea Institute of Science and Technology (KIST, President Seok-Jin Yoon) announced that its team led by Dr. Suyoun Lee (Center for Neuromorphic Engineering) has succeeded in developing ‘artificial sensory neurons’ that will be the key to the practical use of in-sensor computing. Neurons refine vast external stimuli (received by sensory organs such as eyes, nose, mouth, ears, and skin) into information in the form of spikes; and therefore, play an important role in enabling the brain to quickly integrate and perform complex tasks such as cognition, learning, reasoning, prediction, and judgment with little energy.

The Ovonic threshold switch (OTS) is a two-terminal switching device that maintains a high resistance state (10-100 MΩ) below the switching voltage, and exhibits a sharp decrease in resistance above the switching voltage. In a precedent study, the team developed an artificial neuron device that mimics the action of neurons (integrate-and-fire) that generates a spike signal when the input signal exceeds a specific intensity.

This study, furthermore, introduces a 3-terminal Ovonic Threshold Switch (3T-OTS) device that can control the switching voltage in order to simulate the behavior of neurons and quickly find and abstract patterns among vast amounts of data input to sensory organs. By connecting a sensor to the third electrode of the 3T-OTS device, which converts external stimuli into voltage, it was possible to realize a sensory neuron device that changes the spike patterns according to the external stimuli.

The research team succeeded in realizing an artificial visual neuron device that mimics the information processing method of human sensory organs, by combining a 3T-OTS and a photodiode. In addition, by connecting an artificial visual neuron device with an artificial neural network that mimics the visual center of the brain, the team could distinguish COVID-19 infections from viral pneumonia with an accuracy of about 86.5% through image learning of chest X-rays.

Dr Suyoun Lee, Director of the KIST Center for Neuromorphic Engineering, said, “This artificial sensory neuron device is a platform technology that can implement various sensory neuron devices such as sight and touch, by connecting with existing sensors. It is a crucial building block for in-sensor computing technology.” He also explained the significance of the research that “will make a great contribution to solving various social problems related to life and safety, such as, developing a medical imaging diagnostic system that can diagnose simultaneously with examinations, predicting acute heart disease through time-series pattern analysis of pulse and blood pressure, and realizing extrasensory ability to detect vibrations outside the audible frequency to prevent building collapse accidents, earthquakes, tsunamis, etc.”.

####

About National Research Council of Science & Technology
KIST was established in 1966 as the first government-funded research institute to establish a national development strategy based on science and technology and disseminate various industrial technologies to develop major industries. KIST is now raising Korean science and technology status through world-leading innovative research and development.

This work was supported by the KIST Institutional Program, as well as by the Future Semiconductor New Device Source Technology Development Program and the Next Generation Intelligence Semiconductor Technology Development Program funded by the Ministry of Science and ICT(Minister: Lim, Hyesook). The research results were published in the latest issue of the ‘Nano Letters' (IF: 11.189, top 9.062% of the JCR field), an authoritative journal in the fields of nanoscience and nanotechnology.

For more information, please click here

Contacts:
Young Mi Kim
National Research Council of Science & Technology

Office: 82-442-877-376
Expert Contacts

Dr. Lee, Suyoun
Korea Institute of Science and Technology

Office: +82-2-958-6679
Lee, Yeeun (PR Department)
Korea Institute of Science and Technology

Office: +82-2-958-6929

Copyright © National Research Council of Science & Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Sensors

‘Life-like’ lasers can self-organise, adapt their structure, and cooperate July 15th, 2022

CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022

Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

Artificial Intelligence

Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022

‘Nanomagnetic’ computing can provide low-energy AI, researchers show May 6th, 2022

Artificial neurons go quantum with photonic circuits: Quantum memristor as missing link between artificial intelligence and quantum computing March 25th, 2022

Entanglement unlocks scaling for quantum machine learning: New No-Free-Lunch theorem for quantum neural networks gives hope for quantum speedup February 25th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project