Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scavenger nanoparticles could make fuel cell-powered vehicles a reality

Photo by Andrew Roberts on Unsplash
Photo by Andrew Roberts on Unsplash

Abstract:
Engineers at the University of Illinois Chicago are among a collaborative team that has developed a material that could give fuel cell systems a competitive edge over the battery systems that currently power most electric vehicles.

Scavenger nanoparticles could make fuel cell-powered vehicles a reality

Chicago, IL | Posted on April 1st, 2022

In contrast to lithium batteries, fuel cell technology relies on catalyst-driven chemical reactions to create energy. Lithium batteries can typically achieve a range of 100-300 miles on one charge, but they also are vulnerable to the high cost of cathode materials and manufacturing and require several hours to charge. Alternatively, fuel cell systems take advantage of abundant elements such as oxygen and hydrogen and can achieve more than 400 miles on a single charge – which can be done in under five minutes. Unfortunately, the catalysts used to power their reactions are made of materials that are either too expensive (i.e., platinum) or too quickly degraded to be practical.

Until now, that is. With the development of the new additive material, scientists can make an inexpensive iron-nitrogen-carbon fuel cell catalyst more durable. When added to the chemical reactions, the additive material protects fuel cell systems from two of its most corrosive byproducts: unstable particles like atoms, molecules or ions called free radicals and hydrogen peroxide.

Findings from their experiments are reported in the science journal Nature Energy.

Reza Shahbazian-Yassar, professor of mechanical and industrial engineering at the UIC College of Engineering, and colleagues used advanced imaging techniques to investigate the reactions with the material, an additive comprised of tantalum-titanium oxide nanoparticles that scavenge and deactivate the free radicals. The high-resolution imaging of the atomic structures allowed the scientists to define the structural parameters needed for the additive to work.

“In our lab, we are able to use electron microscopy to capture highly detailed, atomic-resolution images of the materials under a variety of service conditions,” said study co-corresponding author Shahbazian-Yassar. “Through our structural investigations, we learned what was happening in the atomic structure of additives and were able to identify the size and dimensions of the scavenger nanoparticles, the ratio of tantalum and titanium oxide. This led to an understanding of the correct state of the solid solution alloy required for the additive to protect the fuel cell against corrosion and degradation.”

Experiments revealed that a solid solution of tantalum and titanium oxide is required and that the nanoparticles should be around five nanometers. The experiments also revealed that a 6-4 ratio of tantalum to titanium oxide is required.

“The ratio is the key to the radical scavenging properties of the nanoparticle material and the solid-state solution helped sustain the structure of the environment,” Shahbazian-Yassar said.

The experiments showed that when the scavenger nanoparticle material was added to the reactions of fuel cell systems, hydrogen peroxide yield was suppressed to less than 2% — a 51% reduction — and current density decay of fuel cells was reduced from 33% to only 3%.

“Fuel cells are an attractive alternative to batteries because of their higher driving range, fast recharging capabilities, lighter weight, and smaller volume, provided that we can find more economical ways to separate and store hydrogen,” Shahbazian-Yassar said. “In this paper, we report on an approach that gets us much closer to making fuel cell-powered vehicles and other fuel cell technologies a reality.”

The paper, titled “Ta–TiOx nanoparticles as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts,” is co-authored by Abhijit Phakatkar of UIC and co-corresponding authors Guoxiang Hu of Queens College of the City University of New York, Yuyan Shao of Pacific Northwest National Laboratory and Liangbing Hu of the University of Maryland. Additional co-authors are Hua Xie, Xiaohong Xie, Venkateshkumar Prabhakaran, Sulay Saha, Lorelis Gonzalez-Lopez, Min Hong, Meiling Wu, Vijay Ramani, Mohamad Al-Sheikhly and De-en Jiang.

The U.S. Department of Energy, the National Science Foundation and the Maryland Nanocenter supported the research.

####

For more information, please click here

Contacts:
Jacqueline Carey
University of Illinois Chicago

Office: 312-996-8277

Copyright © University of Illinois Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Govt.-Legislation/Regulation/Funding/Policy

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Possible Futures

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Announcements

Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022

Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022

An artificial intelligence probe help see tumor malignancy July 1st, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Energy

Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022

Key in increasing efficiency of next-generation solar cell, found in ‘light absorption capacity’! July 1st, 2022

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Organic water splitters get a boost June 10th, 2022

Automotive/Transportation

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Graphene gets enhanced by flashing: Rice process customizes one-, two- or three-element doping for applications March 31st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Fuel Cells

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Graphene gets enhanced by flashing: Rice process customizes one-, two- or three-element doping for applications March 31st, 2022

Activating lattice oxygen in perovskite oxide to optimize fuel cell performance December 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project