Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NYU physicist to lead project that aims to enhance quantum computing: Research backed by $7.5 million multidisciplinary university research initiative award

Photo credit: Selman Keles/Getty Images.
Photo credit: Selman Keles/Getty Images.

Abstract:
New York University Physicist Javad Shabani will lead a team of scientists, under a $7.5 million research award, in developing ways to improve quantum computing—work aimed at advancing the performance of semiconductors and superconductors, which fuel personal electronics, medical diagnostic equipment, and mass transit.

NYU physicist to lead project that aims to enhance quantum computing: Research backed by $7.5 million multidisciplinary university research initiative award

New York, NY | Posted on April 1st, 2022

The award is part of the Department of Defense’s Multidisciplinary University Research Initiative (MURI). MURI is backing 28 research teams across more than 60 U.S. academic institutions with a total of $195 million over five years to conduct basic research spanning multiple scientific disciplines.

“By supporting teams whose members have diverse sets of expertise, the MURI program acknowledges that the complexities of modern science and engineering challenges often intersect more than one discipline and require creative and diverse approaches to tackle these problems,” said Bindu Nair, director, Basic Research Office, Office of the Undersecretary of Defense for Research and Engineering, in announcing the awards. “This cross-fertilization of ideas can accelerate research progress to enable more rapid R&D breakthroughs and hasten the transition of basic research findings to practical application. It is a program that signifies a legacy of scientific impact and remains a cornerstone of the DoD’s basic research portfolio.”

Previously, Shabani and his colleagues uncovered a new state of matter—a breakthrough that offers promise for increasing storage capabilities in electronic devices and enhancing quantum computing.

Under the MURI award, Shabani and his colleagues from Yale University, the University at Buffalo, the University of Maryland, the University of Pittsburgh, and the University of Illinois, Urbana-Champaign will build on the earlier discovery by exploring, more deeply, means to optimize quantum computing—a method that can make calculations at significantly faster rates than conventional computing.

Specifically, they will focus on Majorana zero modes (MZMs), which are zero-energy quasiparticles that have special properties. For example, they remember their movement history. This makes them robust and immune to local noise and errors and, therefore, can be used as building blocks of fault-tolerant topological quantum computers. This allows for long-lived storage of quantum information and more accurate quantum processing. The concept of MZMs can be traced back to the 1930s as a mathematical construction. However, despite recent breakthroughs, efforts to use them in technologies have been largely elusive.

Shabani’s team will seek to establish MZMs’ viability, creating the potential to vastly improve the functionality of both semiconductors and superconductors. Here, they will build on

Josephson junctions (JJs)—layers of semiconducting material placed in between two layers of superconducting material to drive a transition from trivial to topological regime where they can “host” MZMs. These JJs can be placed in microwave circuits for fast readout and manipulation of information paving the way to realize first topological qubits.

These resulting devices will be created with design flexibility in mind—and with the potential to be “scaled up” for use in commercial, industrial, and medical instruments.

####

For more information, please click here

Contacts:
ames Devitt
New York University

Office: United States
Cell: 914-522-3774

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project