Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Probing the inner workings of high-fidelity quantum processors: Scientists use gate set tomography to discover and validate a silicon qubit breakthrough

A silicon quantum processor in which an electron spin qubit (blue) enables communication between two phosphorus nuclear spin qubits (red). Researchers used gate set tomography to show that the processor’s logic gates surpass 99 percent fidelity.

CREDIT
Image courtesy of Sandia National Laboratories and UNSW Sydney.
A silicon quantum processor in which an electron spin qubit (blue) enables communication between two phosphorus nuclear spin qubits (red). Researchers used gate set tomography to show that the processor’s logic gates surpass 99 percent fidelity. CREDIT Image courtesy of Sandia National Laboratories and UNSW Sydney.

Abstract:
The Science
Tiny quantum computing processors built from silicon have finally surpassed 99 percent fidelity in certain logic operations ("gates”). Quantum computers store information in the quantum state of a physical system (in this case, two silicon qubits) then manipulate the quantum state to perform a calculation in a manner that isn’t possible on a classical computer. Fidelity is a measure of how close the final quantum state of the real-life qubits is to the ideal case. If the fidelity of logic gates is too low, calculations will fail because errors will accumulate faster than they can be corrected. The threshold for fault-tolerant quantum computing is over 99 percent. Three research groups demonstrated more than 99 percent fidelity for “if-then” logic gates between two silicon qubits. This required precisely measuring failure rates, identifying the nature and cause of the errors, and fine-tuning the devices. The researchers used a technique called gate set tomography to achieve this in two of the three experiments. The technique combined the results of many separate experiments to create a detailed snapshot of the errors in each logic gate. The researchers were able to make a precise determination of the error generated by different sources and fine-tune the gates to achieve error rates below 1 percent.

Probing the inner workings of high-fidelity quantum processors: Scientists use gate set tomography to discover and validate a silicon qubit breakthrough

Washington, DC | Posted on March 25th, 2022

The Impact
Quantum computing may be able to solve certain problems, such as predicting the behavior of new molecules, far faster than today’s computers. To do so, researchers must build qubits, engineer precise couplings between them, and scale up systems to thousands or millions of qubits. Researchers expect qubits made of silicon to scale up better than the qubits used in today’s testbed quantum computers, which rely on either trapped ions or superconducting circuits. Achieving high-fidelity logic gates opens the door to silicon-based testbed quantum computers. It also demonstrates the power of detailed error characterization to help users pinpoint error modes then work around or eliminate them.

Summary
Qubits – protected, controllable 2-state quantum systems – lie at the heart of quantum computing. Quantum computing processors are built by assembling an array of at least two (and hopefully someday thousands or millions) of qubits, with an integrated control system that can perform logic gates on each qubit and between pairs of qubits. Their performance and capability are limited by errors in the logic gates. High-fidelity gates have low error rates. Once the error rate is less than a certain threshold – which scientists believe to be about 1 percent – quantum error correction can, in principle, reduce it even further. Beating this threshold in laboratory experiments is a major milestone for any qubit technology.

What kinds of errors are occurring is also a big deal for quantum error correction. Some errors are easier to eliminate or correct; others may be fatal. Quantum computing researchers from the Department of Energy (DOE)-funded Quantum Performance Laboratory worked with Australian experimental physicists to design a new kind of gate set tomography customized to a 3-qubit silicon qubit processor. They used it to measure the rates of 240 distinct types of possible errors on each of six logic gates. Of those possible errors, 95 percent did not occur in the experiments, and the remaining errors added up to less than 1 percent infidelity. Research groups in Japan and the Netherlands reported similar results simultaneously, with the Dutch group also using the DOE-funded pyGSTi gate set tomography software to confirm their demonstration.


Funding
Sandia’s portion of this collaborative work was funded by several sources. These include the Department of Energy Office of Science, Office of Advanced Scientific Computing Research’s (ASCR) Quantum Testbed Pathfinder program, ASCR Early Career Research program, and National Quantum Information Science Research Centers (Quantum Systems Accelerator).

####

For more information, please click here

Contacts:
Michael Church
DOE/US Department of Energy

Office: 2028416299

Copyright © DOE/US Department of Energy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

Quantum Physics

Quantum network nodes with warm atoms June 24th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

News and information

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Laboratories

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

Govt.-Legislation/Regulation/Funding/Policy

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Possible Futures

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Chip Technology

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

Quantum Computing

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

Finding coherence in quantum chaos: Theoretical breakthrough creates path to manipulating quantum chaos for laboratory experiments, quantum computing and black-hole research May 27th, 2022

Discoveries

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Announcements

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Quantum network nodes with warm atoms June 24th, 2022

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project