Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Peering into precise ultrafast dynamics in matter

Flowchart of rt-TDDFT approach for evolution of coupled electronic and ionic systems. Here, we assume that the two subsystems have the same evolution time step

CREDIT
Ultrafast Science
Flowchart of rt-TDDFT approach for evolution of coupled electronic and ionic systems. Here, we assume that the two subsystems have the same evolution time step CREDIT Ultrafast Science

Abstract:
A team of researchers from Beijing led by Prof. Dr. Sheng Meng has succeeded in developing predictive first-principles approaches for investigating precise ultrafast processes in matter. The method, named TDAP (time-dependent ab initio propagation), aims at providing robust dynamic simulations of light-induced, highly nonlinear phenomena which are at the atomic and molecular level and occur within a few femtosecond (10-15 sec) or even attosecond (10-18 sec). Fundamental interactions among different degrees of freedom can now be understood more precisely, purely based on quantum mechanical principles, according to the researchers. The results of the research have been published in the scientific journal Ultrafast Science and are expected to foster a variety of further developments in related scientific fields.

Peering into precise ultrafast dynamics in matter

Beijing, China | Posted on March 25th, 2022

The team has spent a decade of years working on extending first-principels theoretical methods into modelling dynamical responses of quantum materials to external fields (e.g., electric, magnetic and laser fields), which are of great interest in these days, but the detailed information remains rather limited. Especially, the generation and synthesis of intense ultrashort light pulses with a controlled electric field and associated phases provide a promising route to dynamically decouple and manipulate the microscopic interactions with an unprecedented time resolution. Therefore, the laser-induced nonequilibrium phenomena have attracted enumerated attention from a broad range of scientific fields.

The theoretical treatment of the time-dependent nonadiabatic phenomena induced by laser is a formidable challenge at many levels, ranging from the description of the excited states to the time propagation of the corresponding physical properties. In TDAP, time-domain quantum evolution of electronic states with the classical approximations of nuclear motions is treated concurrently, which has enabled real-time tracking of coupled electron-nuclear dynamics without having to resort to the perturbation theory. The use of numerical atomic orbital has provided flexibility and credibility to do high-accuracy, large-scale simulations in a wide range of quantum systems with a moderate computational cost.

The method has been applied to the exploration of strong field physics and decoding vast information underneath the experimentally detected signals. By comparing the theoretical and experimental results, the approaches have been demonstrated effective and efficient in treating ultrafast quantum dynamical processes involving complex interactions among photons, electrons and phonons under laser excitation conditions. The development of this method helps understand the excited state dynamics in the fields of photocatalysis, photovoltaic and optoelectronic device design, attosecond pulse synthesis and applications, etc.

####

For more information, please click here

Contacts:
Jiangbo She
Ultrafast Science

Copyright © Ultrafast Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

Chemistry

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Optical computing/Photonic computing

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Deep-ultraviolet nonlinear optical crystals: Concept development and materials discovery July 8th, 2022

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

Photonics/Optics/Lasers

‘Life-like’ lasers can self-organise, adapt their structure, and cooperate July 15th, 2022

Electrically driven single microwire-based single-mode microlaser July 8th, 2022

Deep-ultraviolet nonlinear optical crystals: Concept development and materials discovery July 8th, 2022

Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022

Solar/Photovoltaic

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Key in increasing efficiency of next-generation solar cell, found in ‘light absorption capacity’! July 1st, 2022

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project