Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superb switching uniformity of RRAM with localized nanofilaments of wafer-scale Si subulate array

Fig. 1. (a) Schematics of the SSA fabrication process. (b) SEM images of the SSA during the ICP etching process. (c–e) SEM images of the subulate RRAM devices with different c-radii. (f) 3D profile of uniform SSA from a typical region of the substrate.

CREDIT
©Science China Press
Fig. 1. (a) Schematics of the SSA fabrication process. (b) SEM images of the SSA during the ICP etching process. (c–e) SEM images of the subulate RRAM devices with different c-radii. (f) 3D profile of uniform SSA from a typical region of the substrate. CREDIT ©Science China Press

Abstract:
This study is led by Ying Zhang (doctoral student, Institute of Microelectronics, Chinese Academy of Sciences) and Dr. Xiaolong Zhao (postdoctor, School of Microelectronics, University of Science and Technology of China). Si subulate array (SSA) substrates with different curvature radii fabricated by a low-cost, CMOS-compatible, nanoscale-controllable, and wafer-scale process were utilized to configure highly uniform RRAM devices. The fabrication process of the Ag/ZrO2/Pt subulate device was shown in Fig. 1. The SSA substrate was prepared via inductively coupled plasma (ICP) etching the planar Si substrate. The smallest curvature radius (c-radius) was achieved with a critical ICP etching time. The c-radius of the tip region (TR) can be further controlled by prolonging the etching time. Subsequently, Pt/ZrO2/Ag RRAM devices were prepared on the SSA substrates (one tip per cell).

Superb switching uniformity of RRAM with localized nanofilaments of wafer-scale Si subulate array

Beijing, China | Posted on March 4th, 2022

Compared with the control device with a planar Si substrate, the RRAM devices with subulate substrates exhibit significantly improved cycle-to-cycle and device-to-device uniformity (Fig. 2 and 3). Decreasing the c-radius significantly improves the device performance, including the resistive window, retention characteristics, and uniformity of switching voltages (VSET and VRESET) and resistance.

To determine the effects of the SSA strategy on conductive filament (CF) formation, the Pt/ZrO2/Ag subulate device after the SET process was investigated by transmission electron microscopy and energy dispersive spectroscopy characterization. CFs were demonstrated to be generated in the TR of the subulate device, where the electric field is enhanced by the tip with a small c-radius.

The SSA substrates enhance the local electric field, control a few CFs formed in the TR of each device, and further optimize the device switching performance. The low-cost SSA fabrication process is fully compatible with standard CMOS process for largescale integration. The proposed SSA provides a low-cost, uniform, CMOS-compatible, and nanoscale-controllable optimization strategy for the large-scale integration of highly uniform RRAM devices.

####

For more information, please click here

Contacts:
Bei Yan
Science China Press

Office: 86-10-64015905
Expert Contact

Xiaolong Zhao
School of Microelectronics, University of Science and Technology of China

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project