Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Inorganic borophene liquid crystals: A superior new material for optoelectronic devices

The inset shows a chemical structure of the prepared BoLs. White arrows indicate the borophene oxide atomic layers and purple spheres represent potassium cations.

CREDIT
Tetsuya Kambe from Tokyo Institute of Technology
The inset shows a chemical structure of the prepared BoLs. White arrows indicate the borophene oxide atomic layers and purple spheres represent potassium cations. CREDIT Tetsuya Kambe from Tokyo Institute of Technology

Abstract:
Liquid crystals derived from borophene have risen in popularity, owing to their immense applicability in optoelectronic and photonic devices. However, their development requires a very narrow temperature range, which hinders their large-scale application. Now, Tokyo Tech researchers investigated a liquid-state borophene oxide, discovering that it exhibited high thermal stability and optical switching behavior even at low voltages. These findings highlight the strong potential of borophene oxide-derived liquid crystals for use in widespread applications.

Inorganic borophene liquid crystals: A superior new material for optoelectronic devices

Tokyo, Japan | Posted on February 25th, 2022

Two-dimensional (2D) atomic layered materials, such as the carbon-based graphene and the boron-based borophene, are highly sought after for their applications in a variety of optoelectronic devices, owing to their desirable electronic properties. The monolayer structure of borophene with a network of boron bonds endows it with high flexibility, which can be beneficial for the generation of a liquid state at low temperatures. Thus, it is not surprising that liquid crystals derived from 2D networked structures are in high demand. However, the poor stability of borophene, in particular, makes it difficult for it to undergo a phase transition to the liquid state.



In contrast, borophene oxide—a derivative of borophene—can improve the stability of the internal boron network, in turn stabilizing the entire structure. This property of borophene oxide is different from that of other 2D materials, which are unable to yield liquid crystals without the use of solvents.



To compensate for the lack of suitable liquid crystals, a team of researchers from Japan, including Assistant Professor Tetsuya Kambe and Professor Kimihisa Yamamoto from Tokyo Institute of Technology, investigated the properties of a borophene oxide analogue as a fully inorganic liquid with a layered structure. Their study was recently published in Nature Communications.



Initially, the team used previously tested methods to generate borophene oxide layers (BoL) as crystals (BoL-C). They then converted BoL-C to liquid crystals (BoL-LC) by heating them to temperatures of 105-200°C. They observed that the resultant dehydration weakened the interactions between the interlayers of BoL-C, which is desirable for its flexibility.



The team then analyzed the structural properties of BoL-LC using polarized optical microscopy, discovering that BoL-LC sheets are found stacked parallel to the surface of the liquid drop with a slightly curved form. This spherulite orientation of borophene sheets was confirmed using scanning electron microscopy.



An analysis of the phase transition features revealed that phase transition (P-ii/P-i) occurred at around 100°C for BoL-LC. In fact, both transition phases exhibited high thermal stability at extreme temperatures. The team also observed a highly ordered orientation of the P-ii phase



To test its optical switching behavior, the team created a dynamic scattering device using BoL-LC, and found that unlike other organic liquid crystals, the BoL-based device responded well to voltages as low as 1V. These findings highlight the feasibility of inorganic liquid devices in harsh environments.



“Although a liquid crystal device using graphene oxide has been reported previously, it was a lyotropic liquid crystal, with a strong dependence on the solution concentration. Therefore, the previously reported material is different from the liquid borophene created in this study, without the use of any solvents,” says Dr. Kambe, while discussing the advantages of BoL-LC over other 2D liquid crystals.



What’s more, they found that even upon exposure to direct fire, BoL-LC was noncombustible! This confirms that BoL-LC in a liquid state with an ordered layer structure can exist over a wide range of temperatures – a property which has not been observed so far for other organic materials.

When asked about the implications of these findings, Dr. Kambe and Dr. Yamamoto stated, “BoL-LC exhibits strong potential for use in widespread applications, that are unavailable to conventional organic liquid crystals or inorganic materials.”

Indeed, borophene liquid crystals are stacked with several advantages and may expedite important developments in the optoelectronics and photonics industry in the future!

####

About Tokyo Institute of Technology
Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of “monotsukuri,” meaning “technical ingenuity and innovation,” the Tokyo Tech community strives to contribute to society through high-impact research.

For more information, please click here

Contacts:
Emiko Kawaguchi
Tokyo Institute of Technology

Office: 3-57342975

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Display technology/LEDs/SS Lighting/OLEDs

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project