Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists use DNA to assemble complex nanomaterials: Researchers create DNA nano-chambers with bonds that can control the assembly of targeted nanoparticle structures

IMAGE: SEPARATELY ADDRESSABLE BONDS EXTENDING FROM EACH FACE OF THE CUBE-SHAPED DNA CHAMBER (LEFT) ARE ASSEMBLED INTO ARRAYS OF CHAMBERS CONTAINING NANOPARTICLES (RIGHT). view more 

CREDIT: IMAGE COURTESY OF OLEG GANG, COLUMBIA UNIVERSITY. PORTIONS APPEARED IN LIN, Z., ET AL., ENGINEERING ORGANIZATION OF DNA NANO-CHAMBERS THROUGH DIMENSIONALLY CONTROLLED AND MULTI-SEQUENCE ENCODED DIFFERENTIATED BONDS, J. AM. CHEM. SOC. 142, 17531 (2020).
IMAGE: SEPARATELY ADDRESSABLE BONDS EXTENDING FROM EACH FACE OF THE CUBE-SHAPED DNA CHAMBER (LEFT) ARE ASSEMBLED INTO ARRAYS OF CHAMBERS CONTAINING NANOPARTICLES (RIGHT). view more CREDIT: IMAGE COURTESY OF OLEG GANG, COLUMBIA UNIVERSITY. PORTIONS APPEARED IN LIN, Z., ET AL., ENGINEERING ORGANIZATION OF DNA NANO-CHAMBERS THROUGH DIMENSIONALLY CONTROLLED AND MULTI-SEQUENCE ENCODED DIFFERENTIATED BONDS, J. AM. CHEM. SOC. 142, 17531 (2020).

Abstract:
The Science
In nature, DNA contains the instructions for the cells that allow life to grow, thrive, and reproduce. Researchers see great potential in DNA for its ability to direct assemble of a wide range of customized artificial materials. Scientists have developed a way to design and assemble artificial DNA objects tens of thousands of times smaller than a human hair. These objects can host nanoparticles and link them together into complex structures. Researchers recently extended this approach to include the tunable construction of complex 1, 2, and 3-dimensional structures. The method forms DNA strands into hollow cubes that can carry nanoparticle cargoes. The DNA strands that extend from the cube are encoded with specific assembly directions. This binding information allowed the scientists to precisely control the orientation of the objects in each direction at each step along the assembly pathway.

Scientists use DNA to assemble complex nanomaterials: Researchers create DNA nano-chambers with bonds that can control the assembly of targeted nanoparticle structures

Washington, DC | Posted on February 11th, 2022

The Impact
Scientists are excited about DNA-directed assembly for its potential in next-generation applications. For example, these materials could make nano-robots for use in manufacturing and medicine or new materials to harvest light for energy. This research controlled the creation of complex nanostructures using molecular design and nanoscale programming of DNA for assembly. This approach allows scientists to control the orientation and position of building blocks via each individual bond connecting those blocks. It represents an important advance in the use of DNA for assembling new materials.

Summary
The assembly of nanoscale objects into complex, predetermined structures requires control over the type and direction of the linkages connecting those objects. Scientists have made progress in their ability to design complex nanoscale objects. However, researchers face challenges in precisely assembling these objects as designed with full control over how they bind together. This requires a fundamental understanding of the assembly pathways. In this research, scientists developed a straightforward strategy for creating a cube-shaped DNA nano chamber (DNC) with fully prearranged DNA bonds encoded with all the information needed to direct assembly as designed along each of the three axes of the chamber. The researchers built one-, two-, and three-dimensional ordered arrays of DNCs by fine tuning the directionality of DNA bonds. The researchers also developed computational methods to predict structure formation in these systems. The DNC can host nanoscale cargoes such as metal ions. This allows for the construction of complex organizations of nano cargoes with controlled architectures in a fully prescribed manner across much larger length scales. This effort was greatly enhanced by use of the Transmission Electron Microscopy (TEM) facilities at the Center for Functional Nanomaterials (CFN), a Department of Energy user facility. The researchers used the TEM to directly visualize the DNCs and their organized arrays. They used the X-ray scattering capabilities at the CFN and the National Synchrotron Light Source II (NSLS II), another DOE user facility, to provide additional structural analysis.

####

For more information, please click here

Contacts:
Michael Church
DOE/US Department of Energy

Office: 2028416299

Oleg Gang
Columbia University

Copyright © DOE/US Department of Energy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

JOURNAL

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project