Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Templating approach stabilizes ‘ideal’ material for alternative solar cells

Researchers have developed a method to stabilise a promising material known as perovskite for cheap solar cells, without compromising its near-perfect performance.

CREDIT
University of Cambridge
Researchers have developed a method to stabilise a promising material known as perovskite for cheap solar cells, without compromising its near-perfect performance. CREDIT University of Cambridge

Abstract:
Researchers have developed a method to stabilise a promising material known as perovskite for cheap solar cells, without compromising its near-perfect performance.

Templating approach stabilizes ‘ideal’ material for alternative solar cells

Cambridge, UK | Posted on December 24th, 2021

The researchers, from the University of Cambridge, used an organic molecule as a ‘template’ to guide perovskite films into the desired phase as they form. Their results are reported in the journal Science.

Perovskite materials offer a cheaper alternative to silicon for producing optoelectronic devices such as solar cells and LEDs.

There are many different perovskites, resulting from different combinations of elements, but one of the most promising to emerge in recent years is the formamidinium (FA)-based FAPbI3 crystal.

The compound is thermally stable and its inherent ‘bandgap’ – the property most closely linked to the energy output of the device – is not far off ideal for photovoltaic applications.

For these reasons, it has been the focus of efforts to develop commercially available perovskite solar cells. However, the compound can exist in two slightly different phases, with one phase leading to excellent photovoltaic performance, and the other resulting in very little energy output.

“A big problem with FAPbI3 is that the phase that you want is only stable at temperatures above 150 degrees Celsius,” said co-author Tiarnan Doherty from Cambridge’s Cavendish Laboratory. “At room temperature, it transitions into another phase, which is really bad for photovoltaics.”

Recent solutions to keep the material in its desired phase at lower temperatures have involved adding different positive and negative ions into the compound.

“That's been successful and has led to record photovoltaic devices but there are still local power losses that occur,” said Doherty. “You end up with local regions in the film that aren’t in the right phase.”

Little was known about why the additions of these ions improved stability overall, or even what the resulting perovskite structure looked like.

“There was this common consensus that when people stabilise these materials, they’re an ideal cubic structure,” said Doherty. “But what we’ve shown is that by adding all these other things, they're not cubic at all, they’re very slightly distorted. There’s a very subtle structural distortion that gives some inherent stability at room temperature.”

The distortion is so minor that it had previously gone undetected, until Doherty and colleagues used sensitive structural measurement techniques that have not been widely used on perovskite materials.

The team used scanning electron diffraction, nano-X-ray diffraction and nuclear magnetic resonance to see, for the first time, what this stable phase really looked like.

“Once we figured out that it was the slight structural distortion giving this stability, we looked for ways to achieve this in the film preparation without adding any other elements into the mix.”

Co-author Satyawan Nagane used an organic molecule called Ethylenediaminetetraacetic acid (EDTA) as an additive in the perovskite precursor solution, which acts as a templating agent, guiding the perovskite into the desired phase as it forms. The EDTA binds to the FAPbI3 surface to give a structure-directing effect, but does not incorporate into the FAPbI3 structure itself.

“With this method, we can achieve that desired band gap because we’re not adding anything extra into the material, it’s just a template to guide the formation of a film with the distorted structure – and the resulting film is extremely stable,” said Nagane.

“In this way, you can create this slightly distorted structure in just the pristine FAPbI3 compound, without modifying the other electronic properties of what is essentially a near-perfect compound for perovskite photovoltaics,” said co-author Dominik Kubicki from the Cavendish Laboratory, who is now based at the University of Warwick.

The researchers hope this fundamental study will help improve perovskite stability and performance. Their own future work will involve integrating this approach into prototype devices to explore how this technique may help them achieve the perfect perovskite photovoltaic cells.

“These findings change our optimisation strategy and manufacturing guidelines for these materials,” said senior author Dr Sam Stranks from Cambridge’s Department of Chemical Engineering & Biotechnology. “Even small pockets that aren’t slightly distorted will lead to performance losses, and so manufacturing lines will need to have very precise control of how and where the different components and ‘distorting’ additives are deposited. This will ensure the small distortion is uniform everywhere – with no exceptions.”

The work was a collaboration with the Diamond Light Source and the electron Physical Science Imaging Centre (ePSIC), Imperial College London, Yonsei University, Wageningen University and Research, and the University of Leeds.

####

For more information, please click here

Contacts:
Sarah Collins
University of Cambridge

Office: 01223765542
Cell: 7525337458
Ellie Hall
University of Cambridge

Copyright © University of Cambridge

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Perovskites

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project