Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > SUTD researchers develop ultra-scalable artificial synapse

Brain-inspired device used for integrating both silent and functional synapses

CREDIT
SUTD
Brain-inspired device used for integrating both silent and functional synapses CREDIT SUTD

Abstract:
A research team, led by Assistant Professor Desmond Loke from the Singapore University of Technology and Design (SUTD), has developed a new type of artificial synapse based on two-dimensional (2D) materials for highly scalable brain-inspired computing.

SUTD researchers develop ultra-scalable artificial synapse

Singapore | Posted on December 24th, 2021

Brain-inspired computing, which mimics how the human brain functions, has drawn significant scientific attention because of its uses in artificial intelligence functions and low energy consumption. For brain-inspired computing to work, synapses remembering the connections between two neurons are necessary, like human brains. In developing brains, synapses can be grouped into functional synapses and silent synapses. For functional synapses, the synapses are active, while for silent synapses, the synapses are inactive under normal conditions. And, when silent synapses are activated, they can help to optimize the connections between neurons. However, as artificial synapses built on digital circuits typically occupy large spaces, there are usually limitations in terms of hardware efficiency and costs. As the human brain contains about a hundred trillion synapses, it is necessary to improve the hardware cost in order to apply it to smart portable devices and internet-of things (IoTs).



To tackle this issue, the SUTD research team mimicked behaviors of functional and silent synapses using 2D materials. Additionally, this artificial synapse demonstrates for the first time that it can be implemented with the same device that functions as both functional and silent synapses.



Assistant Prof Loke mentioned that this work can dramatically reduce the hardware costs by replacing functional and silent synapses that were based on complex digital circuits with a single device. “We have demonstrated that functional and silent synapses can be implemented using a single device.”



“By integrating functional and silent synapses into the same device using ultrathin 2D materials, the hardware cost of artificial synapses will significantly decrease, which will drive the commercialization of brain-inspired hardware.” added Assistant Prof Loke.



From the viewpoint of neurobiology, silent synapses would not generate excitatory behavior when presynaptic neurons receive continuous stimuli because they contain N-methyl-D-aspartate (NMDA) receptors, but they lack the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic-acid (AMPA) receptors. However, silent synapses can be activated to become functional synapses that respond to stimulations upon the insertion of AMPA receptors after consecutive stimulations. Inspired by the biological mechanism for silent synapse activation through the insertion of AMPA receptors, transformations from silent synapses to functional synapses in devices can be achieved by introducing sulphur anions in 2D indium selenide material systems. The sulphur anions in indium selenide can migrate under an electric field and exhibit functional synaptic plasticity. This device, based on a fully sulfurized type of system, show obvious memristive behavior at room temperature, which can be used to implement functional synapses. The activation of silent synapses can be demonstrated using a partially sulfurized type of system by modifying the temperature.



This research was published in ACS Applied Materials & Interfaces. The research team include Song Hao, Khin Yin Pang, Nan Wang, Huimin Li, Yu Jiang, Kian-Guan Lim and Tow-Chong Chong from SUTD, and Shuai Zhong, Xinglong Ji and Rong Zhao from Tsinghua University.

####

For more information, please click here

Contacts:
Melissa Koh
Singapore University of Technology and Design

Office: 65-649-98742

Copyright © Singapore University of Technology and Design (SUTD)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

2 Dimensional Materials

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Artificial Intelligence

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project