Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers uncover the mechanism of electric field detection in microscale graphene sensors

Schematic diagram showing the mechanism of electric field sensing in the graphene sensors for (a) positive and (b) negative electric fields. In the case of the positive electric field, the electrons are attracted towards the graphene channel from the SiO2 layer. In contrast, electrons are transferred from the graphene channel to the traps in the SiO2 layer for the negative electric field.

CREDIT
Manoharan Muruganathan from JAIST.
Schematic diagram showing the mechanism of electric field sensing in the graphene sensors for (a) positive and (b) negative electric fields. In the case of the positive electric field, the electrons are attracted towards the graphene channel from the SiO2 layer. In contrast, electrons are transferred from the graphene channel to the traps in the SiO2 layer for the negative electric field. CREDIT Manoharan Muruganathan from JAIST.

Abstract:
The ability to sense the magnitude and polarity of the electric field is of great scientific interest. It has various real-life applications, such as early prediction of lightning and detection of supersonic aircraft. Presently, field mills are the widely used electric field sensors. While they can detect electric fields of either polarity and field of magnitude as low as 1 V/m, the large size (>1m) hinders their wide use for real-life applications. Also, the motor inside the field mill, which enables the detection of the electric field, is prone to failure. Some efforts have been made to miniaturize the electric field sensor by introducing MEMS-based sensors. While they are small and do not involve any moving parts, the complex fabrication process makes these sensors less cost-effective.

Researchers uncover the mechanism of electric field detection in microscale graphene sensors

Ishikawa, Japan | Posted on December 24th, 2021

This encouraged researchers at Japan Advanced Institute of Science and Technology (JAIST) and Otowa Electric Co., Ltd., a leading lightning protection equipment manufacturer, to look for a better alternative. Their investigation led to graphene, a two-dimensional material of one atom thickness. "It is well known that the carrier density in graphene is highly sensitive to external perturbations. Such change in carrier density is reflected in the drain current. Although there was some attempt and proposal to use graphene as an electric field sensor, none of the previous works established the underlying mechanism of electric field sensing in graphene. We realized that it is vital to establish the mechanism first to make any improvement in the sensor, which became our primary goal." says Senior Lecturer Manoharan Muruganathan.

Through a series of well-thought experiments, the team finally established the mechanism of electric field sensing in graphene. It is found that the transfer of charges between graphene and the traps at the SiO2/graphene interface under the application of an electric field is a crucial phenomenon in the sensing mechanism. Such a transfer of charges and the resultant change in carrier density are reflected as the drain current change. The direction of charge transfer depends on the polarity of the electric field. The electrons are transferred from traps to graphene under a positive electric field, whereas they are transferred from graphene to traps under a negative electric field. Thus, the change in drain current under an electric field is opposite for positive and negative electric fields, making it easier to detect the field's polarity. In addition, the number of charge carriers transferred between graphene and the traps depends on the magnitude of the electric field. The higher the electric field, the larger the electrons moved between graphene and the traps. Such difference in the amount of charge transferred is also reflected in the drain current. Thus the drain current variation under the application of an electric field can be equated to the magnitude of the electric field.

####

For more information, please click here

Contacts:
Manoharan Muruganathan
Japan Advanced Institute of Science and Technology

Office: +81-761-51-1573

Copyright © Japan Advanced Institute of Science and Technology (JAIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More information: Afsal Kareekunnan et al., Revisiting the Mechanism of Electric Field Sensing in Graphene Devices, ACS Omega (2021).

Related News Press

News and information

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Graphene/ Graphite

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Resolving the puzzles of graphene superconductivity: Physicists publish a theoretical framework to explain the recent discovery of superconductivity in trilayer graphene December 10th, 2021

2 Dimensional Materials

Researchers detect two-dimensional kagome surface states January 7th, 2022

SUTD researchers develop ultra-scalable artificial synapse December 24th, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Possible Futures

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Sensors

‘Pop-up’ electronic sensors could detect when individual heart cells misbehave December 24th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Discoveries

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Announcements

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project