Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Major instrumentation initiative for research into quantum technologies: Paderborn University receives funding from German Research Foundation

Photo (Paderborn University, Besim Mazhiqi)
Photo (Paderborn University, Besim Mazhiqi)

Abstract:
Quantum technologies are a focus of research worldwide, and an indispensable tool for exploring underlying phenomena used in imaging research for the scientific development of quantum communication systems. The German Research Foundation (DFG) has now approved two major instrumentation initiatives to address such applications. In its “Quantum Communication Development Environment” (QCDE) major instrumentation initiative, it is funding four proposals nationwide. One of the projects to benefit from this funding is being led by Professor Klaus Jöns from Paderborn University. The research project “Photonic Quantum Systems Network - PhoQSNET” is to receive funding to the tune of approximately €2 million for a period of five years.

Major instrumentation initiative for research into quantum technologies: Paderborn University receives funding from German Research Foundation

Paderborn, Germany | Posted on December 24th, 2021

The vast majority of approaches in the field of quantum communication have to date been developed with the aid of highly specialised laboratory set-ups. According to the DFG, the QCDE major instrumentation initiative is intended to be a first step towards standardising sources, transmission and detection, to provide researchers with access to standardised QCDE that allow for research on communication protocols and potential applications. The DFG initiative is a funding tool to support the acquisition of expensive major equipment with outstanding, innovative technology, with the goal of addressing particular scientific issues.

The aim of the PhoQSNet project is to develop a research infrastructure for quantum communication in a real urban environment. To this end, a three-node quantum network is to be set up between two university buildings on campus and one on the Heinz-Nixdorf Campus in Paderborn. “Our vision is an additive, scalable network that builds on the existing telecommunications infrastructure with nodes that comprise a standardised, modular toolbox with the necessary components to implement a multitude of quantum communication protocols,” explains Jöns. These components are quantum light sources (single photons, entangled photons and squeezed states), modulators (phase, polarisation) and detectors (single photon counters, homodyne detectors). The protocols themselves will be the subject of on-going and future projects within the newly established interdisciplinary Institute for Photonic Quantum Systems (PhoQS) in Paderborn. The modules must meet the strictest requirements to enable the complex physical processes: “This means maximising overall efficiency and minimising noise. They also need to meet the requirements of the real world, i.e. take up little space, entail minimal operating costs and demonstrate long-term stability,” says Jöns.

####

For more information, please click here

Contacts:
Nina Reckendorf
Universität Paderborn

Office: 49-525-160-3981
Expert Contact

Professor Klaus Jöns
Paderborn University

Office: +49 5251 60-2486

Copyright © Paderborn University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Quantum communication

Next-generation quantum communication October 3rd, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Tools

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project