Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Activating lattice oxygen in perovskite oxide to optimize fuel cell performance

A figure that explains the modulation of the stability and activity of the SOFC anode confirmed by the researchers in this study. As the level of cobalt increases, the hydrogen oxidation reaction (HOR) activity in the anode increases but at the same time, the lattice oxygen bonding increases which heightens the risk of deterioration of the material stability.

CREDIT
POSTECH
A figure that explains the modulation of the stability and activity of the SOFC anode confirmed by the researchers in this study. As the level of cobalt increases, the hydrogen oxidation reaction (HOR) activity in the anode increases but at the same time, the lattice oxygen bonding increases which heightens the risk of deterioration of the material stability. CREDIT POSTECH

Abstract:
To optimize the performance of fuel cells, a golden ratio must be found. Recently, a Korean research team has uncovered that the performance of fuel cells varies depending on the Co-doping level. Finding the optimal ratio is anticipated to help maximize the performance of fuel cells in the future.

Activating lattice oxygen in perovskite oxide to optimize fuel cell performance

Pohang, South Korea | Posted on December 17th, 2021

A research team led by Professor Jeong Woo Han and Ph.D. candidate Chaesung Lim (Department of Chemical Engineering) of POSTECH, in joint research with Professor Yan Chen and Dr. Huijun Chen of South China University of Technology, has confirmed that as the Co-doping level in the perovskite oxide thin film increases, the lattice oxygen is increasingly activated in the film.



Since electrical energy is generated as lattice oxygen – which makes up the thin film – is activated, controlling this can improve the performance of a solid oxide fuel cell (SOFC), which uses the thin film as an anode.



The SOFC consists of an oxygen ion electrolyte and cathode-anode on both sides. On the cathode side, oxygen ions are formed via oxygen reduction. These ions move to the anode via electrolytes and generate water and electricity by reacting with the hydrogen supplied at the anode.



The research team added cobalt of different levels to the perovskite oxide film model using the pulsed laser deposition (PLD) method. As Co-doping level increased, the lattice oxygen activity in the film also increased and improved the performance of the SOFC anode. However, when the Co-doping level exceeded 70%, the stability of the anode rapidly degraded, lowering its performance.



SOFC, which converts chemical energy into electrical energy without emitting harmful gases, can replace fossil fuels that emit pollutants as a by-product. This makes SOFC the optimal alternative for overcoming the climate crisis as it can be used as a source of energy for powerplants that emit lots of carbon.



However, there are many factors that affect the lattice oxygen activity of the SOFC anode, making it difficult to fine-tune it. In this study, Professor Han’s research team has discovered a way to ultimately improve the performance of fuel cells by allowing the lattice oxygen activity to be modulated with the Co-doping level.



“The effect of cobalt-doping level on the performance of SOFC anodes was affirmed with both theory and experiments in this study,” explained Professor Jeong Woo Han. “This signifies that the strategy to develop the best-performing SOFC has been confirmed.”

This joint study was conducted with the support from the Nano Materials Technology Development Program funded by the National Research Foundation of Korea. The findings from were recently published in Advanced Science, an academic journal of the highest authority in the field of materials science.

####

For more information, please click here

Contacts:
Jinyoung Huh
Pohang University of Science & Technology (POSTECH)

Office: 82-54-279-2415

Copyright © Pohang University of Science & Technology (POSTECH)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Drawing data in nanometer scale September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Perovskites

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Lattice distortion of perovskite quantum dots induces coherent quantum beating September 9th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Possible Futures

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Discoveries

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Announcements

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Conformal optical black hole for cavity September 30th, 2022

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Energy

Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022

Exquisitely thin membranes can slash energy spent refining crude oil into fuel and plastic: Queen Mary scientists have created a new type of nanomembrane that presents a less energy intensive way to fractionate hydrocarbons from crude oil September 30th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Heat-resistant nanophotonic material could help turn heat into electricity: The key to beating the heat is degrading the materials in advance September 23rd, 2022

Fuel Cells

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Scavenger nanoparticles could make fuel cell-powered vehicles a reality April 1st, 2022

Graphene gets enhanced by flashing: Rice process customizes one-, two- or three-element doping for applications March 31st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project