Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change

This image offers an abstract visual representation of graphene oxide sheets (black layers) embedded with nanodiamonds (bright white points). The nanodiamonds exert long range electrostatic forces (nebulous white circles) which stabilize the sheets even in humid conditions creating a promising membrane material for hydrogen purification. (Ⓒ Yasuhiro Chida (Brocken 5) and Toru Tsuji (Photograph))

CREDIT
Ⓒ Yasuhiro Chida (Brocken 5) and Toru Tsuji (Photograph)
This image offers an abstract visual representation of graphene oxide sheets (black layers) embedded with nanodiamonds (bright white points). The nanodiamonds exert long range electrostatic forces (nebulous white circles) which stabilize the sheets even in humid conditions creating a promising membrane material for hydrogen purification. (Ⓒ Yasuhiro Chida (Brocken 5) and Toru Tsuji (Photograph)) CREDIT Ⓒ Yasuhiro Chida (Brocken 5) and Toru Tsuji (Photograph)

Abstract:
Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change.

Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change

Kyoto, Japan | Posted on December 17th, 2021

Hydrogen, a clean-burning fuel, leaves nothing but water when consumed. Many countries view hydrogen as a way to a zero-carbon future, but switching to a hydrogen economy requires its production to be much more affordable than it is now.

In a study published in Nature Energy this month, researchers led by Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) describe how nanodiamond-reinforced composite membranes can purify hydrogen from its humid mixtures, making the hydrogen generation processes vastly more efficient and cost-effective.

“There are several scalable methodologies to produce hydrogen, but hydrogen generally comes as humid mixtures and their purification is a challenge,” says Professor Easan Sivaniah, who led the iCeMS team. “Membrane technology allows for energy-efficient and economical separation processes. But we need to have the right membrane materials to make it work,” Sivaniah added.

Graphene oxide (GO), a water-soluble derivative of graphite, can be assembled to form a membrane that can be used for hydrogen purification. Hydrogen gas easily passes through these filters, while larger molecules get stuck.

Hydrogen is typically separated from CO2 or O2 in very humid conditions. GO sheets are negatively charged, which causes them to repel each other. When exposed to humidity, the negatively charged sheets repel each other even more, allowing water molecules to accumulate in the spaces between the GO sheets, which eventually dissolves the membrane.

Dr Behnam Ghalei, who co-supervised the research, explained that adding nanodiamonds to the GO sheets resolves the humidity-induced disintegration problem. “Positively charged nanodiamonds can cancel out the membrane’s negative repulsions, making the GO sheets more compact and water-resistant.”

The team also included other research groups from Japan and abroad. The researchers at Japan Synchrotron Radiation Research Institute (SPring-8 / JASRI) conducted advanced X-ray studies. The Institute for Quantum Life Science (QST) helped with materials development. ShanghaiTech University (China) and National Central University (Taiwan) were involved in state-of-the-art materials characterizations.

“In our collaboration with Dr. Ryuji Igarashi of QST, we were able to access nanodiamonds with well-defined sizes and functionality, without which the research would not have been possible,” says Sivaniah. “Importantly, Igarashi’s group has a patented technology to scale up nanodiamonds production at a reasonable cost in the future.”

Sivaniah says that nanodiamonds have potential uses beyond hydrogen production. Humidity control is also vital in a number of other fields, including pharmaceuticals, semiconductors, and lithium-ion battery production. Membrane technology could also revolutionize air conditioning by efficiently removing humidity. Air conditioners are among the most inefficient ways to cool, as a significant amount of the electricity used to power them is used to remove humidity, generating more CO2 emissions and creating a vicious spiral for global warming.

The Japanese government is deeply committed to a zero-carbon future. It has established a US$20 billion Green Innovation Fund to support joint partnerships between major industry players and entrepreneurial ventures that bring new technologies to the market.

iCeMS at Kyoto University is one of the leading institutes in Japan for innovative approaches in engaging science to help society. Sivaniah is the founder of OOYOO (www.OOYOO.co.jp), a start-up which aims to be instrumental in commercializing membrane technology for a zero-carbon future.

####

About Kyoto University
About Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS):
At iCeMS, our mission is to explore the secrets of life by creating compounds to control cells, and further down the road to create life-inspired materials.

For more information, please click here

Contacts:
Izumi Mindy Takamiya
Kyoto University

Office: 75-753-9764

For more information, contact:
Christopher Monahan/I. Mindy Takamiya

Copyright © Kyoto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Materials/Metamaterials

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

Environment

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Energy

Generating power where seawater and river water meet July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

A novel graphene based NiSe2 nanocrystalline array for efficient hydrogen evolution reaction July 15th, 2022

Novel compound boosts urea to sustainable energy reaction process, researchers report: Integrating energy-saving hydrogen production with urea electrooxidation over crystalline-amorphous NiO-CrOx electrocatalyst July 15th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project