Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change

This image offers an abstract visual representation of graphene oxide sheets (black layers) embedded with nanodiamonds (bright white points). The nanodiamonds exert long range electrostatic forces (nebulous white circles) which stabilize the sheets even in humid conditions creating a promising membrane material for hydrogen purification. (Ⓒ Yasuhiro Chida (Brocken 5) and Toru Tsuji (Photograph))

CREDIT
Ⓒ Yasuhiro Chida (Brocken 5) and Toru Tsuji (Photograph)
This image offers an abstract visual representation of graphene oxide sheets (black layers) embedded with nanodiamonds (bright white points). The nanodiamonds exert long range electrostatic forces (nebulous white circles) which stabilize the sheets even in humid conditions creating a promising membrane material for hydrogen purification. (Ⓒ Yasuhiro Chida (Brocken 5) and Toru Tsuji (Photograph)) CREDIT Ⓒ Yasuhiro Chida (Brocken 5) and Toru Tsuji (Photograph)

Abstract:
Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change.

Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change

Kyoto, Japan | Posted on December 17th, 2021

Hydrogen, a clean-burning fuel, leaves nothing but water when consumed. Many countries view hydrogen as a way to a zero-carbon future, but switching to a hydrogen economy requires its production to be much more affordable than it is now.

In a study published in Nature Energy this month, researchers led by Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) describe how nanodiamond-reinforced composite membranes can purify hydrogen from its humid mixtures, making the hydrogen generation processes vastly more efficient and cost-effective.

“There are several scalable methodologies to produce hydrogen, but hydrogen generally comes as humid mixtures and their purification is a challenge,” says Professor Easan Sivaniah, who led the iCeMS team. “Membrane technology allows for energy-efficient and economical separation processes. But we need to have the right membrane materials to make it work,” Sivaniah added.

Graphene oxide (GO), a water-soluble derivative of graphite, can be assembled to form a membrane that can be used for hydrogen purification. Hydrogen gas easily passes through these filters, while larger molecules get stuck.

Hydrogen is typically separated from CO2 or O2 in very humid conditions. GO sheets are negatively charged, which causes them to repel each other. When exposed to humidity, the negatively charged sheets repel each other even more, allowing water molecules to accumulate in the spaces between the GO sheets, which eventually dissolves the membrane.

Dr Behnam Ghalei, who co-supervised the research, explained that adding nanodiamonds to the GO sheets resolves the humidity-induced disintegration problem. “Positively charged nanodiamonds can cancel out the membrane’s negative repulsions, making the GO sheets more compact and water-resistant.”

The team also included other research groups from Japan and abroad. The researchers at Japan Synchrotron Radiation Research Institute (SPring-8 / JASRI) conducted advanced X-ray studies. The Institute for Quantum Life Science (QST) helped with materials development. ShanghaiTech University (China) and National Central University (Taiwan) were involved in state-of-the-art materials characterizations.

“In our collaboration with Dr. Ryuji Igarashi of QST, we were able to access nanodiamonds with well-defined sizes and functionality, without which the research would not have been possible,” says Sivaniah. “Importantly, Igarashi’s group has a patented technology to scale up nanodiamonds production at a reasonable cost in the future.”

Sivaniah says that nanodiamonds have potential uses beyond hydrogen production. Humidity control is also vital in a number of other fields, including pharmaceuticals, semiconductors, and lithium-ion battery production. Membrane technology could also revolutionize air conditioning by efficiently removing humidity. Air conditioners are among the most inefficient ways to cool, as a significant amount of the electricity used to power them is used to remove humidity, generating more CO2 emissions and creating a vicious spiral for global warming.

The Japanese government is deeply committed to a zero-carbon future. It has established a US$20 billion Green Innovation Fund to support joint partnerships between major industry players and entrepreneurial ventures that bring new technologies to the market.

iCeMS at Kyoto University is one of the leading institutes in Japan for innovative approaches in engaging science to help society. Sivaniah is the founder of OOYOO (www.OOYOO.co.jp), a start-up which aims to be instrumental in commercializing membrane technology for a zero-carbon future.

####

About Kyoto University
About Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS):
At iCeMS, our mission is to explore the secrets of life by creating compounds to control cells, and further down the road to create life-inspired materials.

For more information, please click here

Contacts:
Izumi Mindy Takamiya
Kyoto University

Office: 75-753-9764

For more information, contact:
Christopher Monahan/I. Mindy Takamiya

Copyright © Kyoto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project